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So What, Who Cares

 What space/topic/area is being addressed?

– X-ray-based baggage inspection

– Nominally carryon but methods are more broadly applicable 

 What problem have you solved?
– Improve detection performance for severely limited view systems

 How have you solved the problem?

– Similar to dual energy CT case: 

– In limited view cases, DE image formation is at best challenging

– We have development a new iterative reconstruction methods fusing traditional 

absorption data with Compton scatter photons

 So what? Who cares?

– Demonstrating the (potential) value of information typically thrown away 

– Ultimately increase Pd, decrease Pfa etc.

Photoelectric + Compton → Material Maps → Detection

Compton Scatter Photons  = Additional Raypaths → 

Improved Imaging → Improved Material Maps → Improved Detection 
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Background 

 Ultimate goal: Improved detection

 Scenario of interest:  few, fixed 

sources where traditional DE 

image formation will break down

 Approach:

 Measure Compton Scatter = 

additional raypaths

 Combined with energy resolved 

data (~100 few keV

bins/detector) 

 Rationale

1. Improved ability to resolve 

photoelectric and density →

2. Improved ability to 

characterize materials →

3. Improve detection  Primary 

Source

Primary 

Detector 

Secondary 

Detector 

Single (Compton) 

scatter path
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Compton Scatter

Primary 

source
Primary detector

Scatter detector

Scatter
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𝑟𝑑

• From these physics we construct a computational model connecting 

maps of density and photoelectric absorption to energy resolved 

observation of attenuated and scattered photons.

• Use model as the basis for imaging
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Is the model accurate?

Test Apparatus

Schematic top view of apparatus 

(end view of notional tunnel)

Mx detector array

X-ray 
source

X-ray 

sour

ce

Delrin Aluminum

 Elementary target configuration consists of two 
image targets, each with a 2” diameter circular 
cross section:

– Delrin (CH2O) Zeff ~ 7   = 1.4 g/cm3

– Aluminum  (Al) Z = 13   = 2.7 g/cm3

This slide contains material that was funded through DHS 

S&T contract #HSHQDC-15-C-B0012. See cover slide.
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Tx model validation: Delrin and 

Aluminum, 2” cylinders
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This slide contains material that was funded through DHS 

S&T contract #HSHQDC-15-C-B0012. See cover slide.
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Image Formation: Initial Results 
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Initial Results

Density Reconstruction

Phantom #1 Phantom #2

Phantom #2:

0-1.2 g/cm
Phantom #1:

0-2.4 g/cm
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Initial Results 

Photoelectric  Reconstruction

Phantom #2 Phantom #1 

Phantom 3: 0-.5 cm-1
Phantoms 1: 0-.6 cm-1
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Real Data: Initial Results

• Two views, 0 and 45 degrees source locations

• Low count data, averaging over 10 slots each with 0.1 sec observation

This slide contains material that was funded through DHS 

S&T contract #HSHQDC-15-C-B0012. See cover slide.
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Looking Ahead to Better Data: 

Simulation Results

• Three views, 0, 45 and 90 degrees

• High count data are assumed 

This slide contains material that was funded through DHS 

S&T contract #HSHQDC-15-C-B0012. See cover slide.
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Conclusion

 Moving toward the conclusion that multi-energy scatter data can be fused 

with traditional absorption data to (substantially) improve imaging in limited 

view geometries

 Certainly true in simulation.  

 Confident (at least ELM is) that this will be demonstrated from real data

 Materials ID to be explored in coming months

 Operationalization is not trivial

 Scattered photons take time to collect.

 Likely need to process scatter data in specific regions of interest

 Computational burden is not small but methods are embarrassingly 

parallelizable

 Work needed to understand trade-space comprised of computational 

architecture (CPA, FPGA, GPU), speed, and cost.  

 May also be value in supporting effort in numerical linear algebra

 The story of this work is IMHO a nice example of how basic ALERT research 

can be moved out of the campus lab and toward actual application



14

BACKUP
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Compton Scatter

 Hypothesis: Some energy leaving the main 

bean can be usefully recovered and 

ultimately improve detection  performance

 Dominant process of interest here is 

Compton Scatter

 Inelastic scattering of an incoming X-ray 

photon by an electron 
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Discrete Compton Scatter Model  

• Data vector aggregates information as a function of

• Source-Primary Detector pair, 𝑟𝑠, 𝑟𝑑′
• Secondary detector: 𝑟𝑑
• Energy: 𝐸′

• Nice structure:

• Kind of linear in density

• Will be exploited in processing

• For system with relatively few primary raypaths

• Compton scatter gives many more “looks”

• But signal strength lower.  Either lower SNR or increased integration 

time

• Settle for additive white Gaussian noise for now.  Poisson later.
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Compton Scatter Model  

• Single scatter model

• Propagate (attenuate) source 

to image point

• Scatter at image point

• Propagate image point to 

secondary detector

𝑔 𝑟𝑑 , 𝐸′ = න 𝐼 𝐸 නℎ 𝑟𝑑 , 𝑟, 𝐸
′
𝑁𝐴
2

ሻ𝑑𝜎𝐾𝑁(𝐸, 𝜃

𝑑𝛺
ℎ 𝑟, 𝑟𝑠, 𝐸 𝜌 𝑟 𝑑𝑟𝑑𝐸

= න𝐾 𝑟𝑑 , 𝑟, 𝐸; 𝜌, 𝑝 𝜌 𝑟 𝑑𝑟

𝑟
𝑟𝑑′

𝑟𝑑

𝑟𝑠 ℎ 𝑟𝑑 , 𝑟, 𝐸′
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2
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Compton Scatter Model  

• Compton Scatter- Continuous form  

• Compton Scatter- Discrete form  

scattered 

data
discretized 

scattering 

system

measureme

nt noise
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Amplified by Log10 scaling 

(grayscale)

-30

+30


tim

e

Horizontal detector array Vertical detector array Corner gap

1,000,000 /2sec

10,000 /2sec

100 /2sec

1 /2sec

Scatter signal (Delrin)

Scatter signal (Aluminum)

Low signals emphasized
Color indicates counts/pixel per 2.0 sec time period

(all energy channels summed)

This slide contains material that was funded through DHS 

S&T contract #HSHQDC-15-C-B0012. See cover slide.
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Scatter model validation: 

Varying target positions
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Scatter model validation: 

Spectra and effect of dwell time
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Inverse Problem 

data mismatch regularization

• Solution approach

• Impact of photoelectric on data is 

small

• Assume it can be ignored and 

first solve for density

• After density recovered, estimate 

photoelectric

• Could iterate, but leave that for later
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Density Reconstruction  

[1] Oguz Semerici, “Image Formation Methods for 

Dual Energy and Multi-Energy Computed 

Tomography,” PhD Thesis, Dept. of ECE Tufts 

University, October 2012.

 Regularization

• Gradient-based

• Iterative Edge-Enhancing [1]

• All 𝜆𝜌chosen to minimize MSE 

(Clearly needs to be changed)

 Initial Guess 

• Attenuation based CT images

• Constant background image



24

Multi-Scale Approach  

• Initial efforts recovering density using fine 

scale grid of pixels did not work out so 

well.

• Multi-scale approach worked out much 

better

1. Begin at coarse scale, 𝑁𝑅 × 𝑁𝐶, 

representation 

2. Initialized as a constant density 

image

3. Estimate ρ
4. Interpolate onto finer grid 

5. Goto 3 until fine enough
• Regularization parameter updated at every 

scale
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Edge-Enhancing Regularization

 Gradient-based regularization  

penalizes all high differences even 

edges

 Edge-enhancing regularization de-

emphasizes the smoothing for the 

edge locations in the image 

 Diagonal elements on the weighting 

matrix determine whether a pixel 

belongs to the edge map

• Closer to one : enforce 

smoothness 

• Closer to zero : should be 

preserved
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Edge-Enhancing 

Regularization  

𝜌 𝐿𝜌

𝐷 1 𝐿𝜌 𝐷 2 𝐿𝜌

𝐷 3 𝐿𝜌

𝐷 5 𝐿𝜌

𝐷 4 𝐿𝜌

𝐷 6 𝐿𝜌

𝑹𝝆,𝒍 = 𝝀𝝆,𝒍 𝑫 𝒍 𝑳𝝆
𝟐

𝟐
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Simulation Results

Scale 1 
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Scale 3 
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Density Estimation: Iterative Edge-Enhancing 
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Initial Results

Density Reconstruction

Value of Heterogeneous Data

Only Scatter DataOnly Attenuation Data

Attenuation and 

Scatter Data
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[2] D.W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” Journal of the Society 

for Industrial and Applied Mathematics, pages 431–441, 1963.

[3] Brian H. Tracey and Eric L. Miller, “Stabilizing dual-energy X-ray computed tomography reconstructions 

using patch-based regularization,” Inverse Problems, 31(10), 05004, September 2015

Photoelectric Estimation  

• Joint attenuation and Compton Scatter inversion

• Non-linear least squares optimization problem

• Levenberg-Marquardt method [2] 

• Patch-based non-local mean (NLM) regularization [3] 

• Constant background image as initial guess 
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Patch-based Regularization

• Reduce noise artifacts 

• Brings demising step into inversion process

• Calculates weighting matrix using density 

estimation as reference image  

[2] D.W. Marquardt, “An algorithm for least-squares estimation of 

nonlinear parameters,” Journal of the Society for Industrial and 

Applied Mathematics, pages 431–441, 1963.
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Scaling Up:

Parallel MPI Matlab code

• A parallel MPI Matlab code is developed to speed up 

the inversion process and reduce the memory cost

• The code distributes the algorithm such that each 

processing unit will process data from a single 

incident beam 

• The code uses efficient memory storage where only 

the necessary beam-cell intersections are stored

• The memory is reduced by more than 20 times while 

the algorithm speed depends linearly on the number 

of processers  

This slide contains material that was funded through DHS 

S&T contract #HSHQDC-15-C-B0012. See cover slide.


