ADSA15: Attribute-Based Searching and 360° Surveillance Video

Cindy Fang fangc@ll.mit.edu November 16, 2016

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

- Topic Areas:
 - Video Surveillance Technologies and Video Analytics
- Challenges addressed
 - Video surveillance trade-off between coverage and resolution
 - Forensic video search for a person of interest
- What did we do?
 - Built a high resolution 360 degree camera system with COTS parts and demonstrated system at Logan Airport
 - Developed an attribute-based search tool
- Benefits:
 - High quality video with coverage everywhere ensures every incident is recorded
 - Improve forensic search time from hours to tens of minutes

Critical Infrastructure Protection Video Surveillance

Typical problem: Foley Square, NYC

Typical operator control room

- Video surveillance challenges
 - Inadequate resolution
 - Disjointed situational awareness
 - Gaps in camera coverage
 - Operator fatigue / overload

Immersive Imaging System (IIS)

Size	13.5" diameter	
Resolution	1.2 cm @ 100m	
Pixels	240 megapixels	
Frame Rate	8 frames/second	
Data Rate	1 TB / hour	

- 360 degree coverage from sensor location
- Compact and lightweight
- On-board electronics and firmware
- Inexpensive components cell phone imagers

Logan Airport (Terminal A) Deployment

MASSPORT / TSA / Police Needs

- Real-time scene monitoring and situational awareness
 - Comprehensive 360 degree coverage
 - Automated cuing of real-time events
- Forensic incident review and suspect backtracking
 - Automated image search

Attribute-Based Searching

Robust moving person detection

Probabilistic image interpretation

Key elements

- Combining contour characterizations, foreground detection, and perspective information in order to get robust moving person detection
- Defining flexible hierarchical probabilistic models for the appearance of persons and their sub-components

Example : Search Input

Search Criteria	2 X	
	- Attributes	Gender
Gender:	Male	Hair / hat color
Head Colors:		
Torso Colors:		Torso clothing color
Lower Colors:		Lower body clothing color
Number of Bags:	0 🚊	- Lower body clothing color
Bag 1;	Backpack.	Number and type of bags
Color:		
Bag 2;	Backpack 💌	Bag color
Color:		
Sea	arch parameters	
Start Time:	10/25/2010 11:29:00 AM 💌	Search time window
End Time:	10/25/2010 2:30:00 PM	Cearen time window
Number of cameras:	All cameras	Cameras to search
Camera_1	Set Region:	
Camera_1	Set Region:	Search regions within
Camera_1	Set Region:	camera views
	OK Careal	

Example : Search Results

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Fang_ASDA15 - 8 CYF 11/16/16

Person Detection Performance

Example surveillance region

- Unobstructed view
- Average person height: ~100 pixels
- Moderate pedestrian flow

Person detection works very well for indoor views with moderate crowd flow and sufficient pixels-on-target

- Label attributes for all persons who pass through one area of terminal
- Execute sample searches, then count missed detections or false positives

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Summary

- Built high-resolution 360 degree video surveillance system for critical infrastructure protection
 - Demonstrated system at Logan Airport and other public spaces

- Developed attribute-based search application
 - One of many video analytics applications from MITLL

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

This material is based upon work supported by the Department of Homeland Security under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of Homeland Security.

© 2016 Massachusetts Institute of Technology.

Delivered to the US Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

• Capture high resolution imagery to detect and identify vehicles and people

	Detection	Identification	
Vehicles	50 cm resolution	13 cm resolution	
People	20 cm resolution	1.2 cm resolution	240 million pixels for 360 ^o coverage within 100m

- Provide wide-area persistent camera coverage (240 Mpixels) Challenges
 - High pixel count sensor
 - Efficiently manage and store data
 - Provide useful forensic and tactical tools to assist the user
 - Potential to be cost effective

- Immersive Imaging System (IIS)
- Sponsored by DHS S&T
 - POC: John Fortune
- Partners: Pacific Northwest National Labs
 - POC: Douglas MacDonald
- Patents Issued:
 - US Patent No. 9007432: Imaging Systems and Methods for Immersive Surveillance
 - US Patent No. 9036001: Imaging System for Immersive Surveillance

IIS Spiral 3 System Components

Seam Calibration

- For each camera pair
 - Using nominal parameters approximate overlap
 - Extract common features
 - Find matching features in feature space
 - Refine matches using RANSAC algorithm assuming a projective transform
- Optimize over all parameters using error in projected features

Unprocessed IIS Image

Processed IIS Image

- Leverage detection algorithms from Constant Hawk
 - Adaptive statistical background modeling

MIT LL Approach

Algorithm flow chart:

Robust Person Detection

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Gender Classification

Female Samples

Retrain local gradient classifier for gender classification based on labeled examples

• Resulting classifier relies on contour characteristics (frame, hair, clothing, etc.)

Image Interpretation

Model concept

- Given a set of attributes, appearance of person is result of a hierarchical generative process
- At each level of hierarchy, there is a defined probability of generating observations at next level

Generative model structure

Illustration of hierarchy

