

Overview

- Threat envelopes were once lists of materials
- New threats (especially HMEs) cannot be defined solely by a list
- Need a way to specify threats for development
 - Comprehensive yet Simple
 - Explicit yet Open
 - Useful yet Non-limiting

Why Specify?

- Historically
 - Detection requirements were a list of materials
 - Used empirical data for threat characterization
 - Build device, scan library, enter test
 - What you see is what you detect
- Some threats (especially certain HMEs) are challenging
 - Cost
 - Safety
 - Time
 - Variability
 - Maintenance
 - Presentation
 - Repeatability
- As threats evolve, exclusively gathering empirical data is no longer feasible

Why talk about Jell-O?

- Can't always talk as openly about threats as we'd like
 - I'd really like to talk about how to specify a MATERIAL-X detector
- Jell-O is a convenient short-hand
 - · Looks sufficiently like certain threats, depending on properties
 - A solution to specification for Jell-O will probably work for real threats
 - Looks like other stuff that one might find in luggage (e.g., toiletries)
 - Can mix in other stuff for texture / inclusions
 - Moldable and easily containerized
- Easily synthesized to validate that specification works
- There's always room for Jell-O!

What needs to be specified?

- What is Measured?
 - Quantity: Mass <u>and</u> Volume
 - Measuring technology
 - Physical Characteristics
 - Density, Zeff, etc. (whatever those mean)
 - Variability tolerances (min, max)
 - Change over time
 - Presentation
 - Critical dimensions (min & max), including shape
 - Contiguousness
 - Concealment
 - Containerizability
 - Homogeneity

Measured is not the same as Measurable

- Do I care that Jell-O can be red, green, or blue?
- Key Observation: Specification informed by detection technology
 - Vicious cycle of specification and potentially stifles innovation
- But wait, there's more!
 - Homogeneity
 - Interior versus surface
 - Do Homemade and Commercial Jell-O differ?
 - Detection expectation (P_D)
 - Is all Jell-O considered equal?
 - Distribution across the domain
 - Even a few characteristics lead to an intractable problem

The distribution problem

- Imagine two features
 - Let's call them "ρ" and "Z"
- Jell-o has a min & max for those features
 - Does <u>not</u> imply that all possible combinations are viable
 - Does <u>not</u> imply that all possible combinations are equally likely
- Need an n-dimensional "heat map"
 - Testing should reflect heat map
 - Don't test the borders to validate the region
- May need sub-regions
 - How many? (2 / 3 / 4)
- Gets messy fast

Other implications

- Having a specification enables a mix of white-box ("in the know") and black-box ("in the dark") testing
 - Black-Box: based on problem specification
 - White-Box: based on solution approach

Enables the creation of "legitimate" simulants that follow the spec Customers include vendors and validators

Some More Issues

- Can we know what isn't specified?
- How do we ensure robustness?
 - Could be easier, could be much harder
- How do we mix analytical and empirical data?
- How do we focus the lens of different acquisition devices?
- Does this stifle technological creativity?
- Must the specification be entirely physics/chemistry based?
- How do we keep the recipe from becoming too sensitive?
- So... can it be done?
- Academics needed: solve the characterization problem!
 - Need something simple
 - If it doesn't work for Jell-O, it won't work for HMEs