Status Update Weapons ATR For Checkpoint CT

Rohit Patnaik

President and CTO,

Capture L.L.C.,

San Diego, CA

rohit.patnaik@capture-llc.com

So What? Who Cares?

- Capture is developing 3rd party ATR for Prohibited Items (Checkpoint CT)
- Will reduce TSO workload dramatically (primary screen)
 - Our Goal 75% of bags cleared automatically. 1 in 4 to secondary image review.
 - Huge opportunity for cost savings and security improvements.
- Utilizing OTAP Project Capabilities to develop ATR
 - Capture has expertise in 3D computer vision
 & machine learning to solve the problem
 - DICOS infrastructure enables 3rd party involvement....key issue, good progress!

Project Area	Number of Projects
3D Image Reconstruction related projects	18
Computer Vision: Registration/Feature Extraction	42
Machine Learning/Neural Networks	11

- Completed Task Order 1. Lots more work to be done.
- We are not presenting PD/PFA results today
 - 4 checkpoint CT images with weapons available to third parties
 - Access to data and funding has been challenging for third party ATR

OTAP Task Order 1 - Scope

- Current Task Order is for proving DICOS data flow from OEMs to 3rd Party Developers to Output
- We use Capture's existing ATR component technologies utilizing object feature extraction and machine learning
- Initial scope is Assembled Guns and Open Knives
 - Types of weapons to be determined at next data collection
 - Extend to other prohibited items in future
- 11 images so far (including 4 weapons)
 - More images will be acquired in May, July and August with OTAP
- We are delivering a pre-beta prototype ATR in May (completing task 1 goal)
- Next task order will provide additional funding for algorithm development
 - Would like to utilize Deep Learning approaches in the future
- Lots more work to do!!

ATR Flow Chart

Future: Deep Convolutional Neural Networks

- We think that deep learning convolutional neural networks can provide a broader, more generalized solution.
 - Needs more data but we have strategies to manage with less.
 - We can utilize SOC data.
- The CNN will extract its own feature maps and decide what is important.
 - Hundreds of hidden layers
 - GPU's are a big enabler to train these networks
- Feature extraction is a highly skilled and difficult problem and requires large investments to come up with the right features.
 - Checkpoint bag objects are unpredictable
 - Huge variation in objects (including threat and non threat)
 - More training data can capture object variation
- It is now possible to visualize and make sense of the data through the layers not so much of a black box anymore.
- It is also possible to keep deep learning networks modular and add new capabilities without re-training already certified models.

Thoughts On Challenges Ahead ...

- Algorithm Approach Will be based on available Funding
 - Feature extraction short term cheaper
 - Easier to demonstrate short term progress
 - Leverage existing algorithms, Add new ones
 - Deep Learning long term cheaper
 - Higher upfront costs for architecture, data collection, labeling and computing resources
 - Can be modular and scalable
- Data collection Feature Extraction + Machine Learning
- Data collection Deep Learning
 - We have strategies of how to address large data requirements with less data – both in labeling as well as well as variation.
 - Data acquired could be shared with other third parties.

- Which Guns and Knives to include
 - Limit scope in Data collection 1 to reduce cost and demonstrate progress
 - Focus on assembled guns and knives for now that are size appropriate for checkpoint bags
 - Will depend on what is available on site and/or local borrowed/rented sources
- PD/PFA
 - Archive data from operational trials at real airports
 - This SOC data can be used to improve algorithm

6/2017 CAPTURE L.L.C

Capture

- Capture is a 3rd party ATR Developer. We work with OEM's to provide solutions.
- Our Expertise is in 3D/2D algorithms for Computer Vision and Machine Learning.

Project Area	Number of Projects
3D Image Reconstruction related projects	18
Computer Vision: Registration/Feature Extraction	42
Machine Learning/Neural Networks	11

- We have experience in diverse industries from Security, Manufacturing to Medical.
- Capture is working on a Weapons ATR through Sandia National Laboratories (OTAP Project).