DHS SCIENCE AND TECHNOLOGY

TSL Basis Material Decomposition for CT Analysis

Science and Technology

ADSA16

May 3, 2017

Ronald Krauss, Robert Klueg (DHS S&T)

Joseph Palma (Battelle)

Alex DeMasi (Signature Science)

Transportation Security Laboratory

Applied Research Division

Conclusion

- Dual-energy CT based BMD results in material features (electron density, effective atomic number) that are reasonably systemindependent
 - No need for beam hardening compensation
- Photon counting CT based BMD also results in material features that are commensurate with DECT based BMD
 - System dependence less of an issue due to photon counting
 - No need for beam hardening compensation
 - Single-row MultiX CZT detectors are reasonable to use for our purposes
 - Detector response imperfections cancel out when determining features, including LAC(E)
- Discussion: are these methods relevant and applicable to security screening systems?

Part 1: DECT BMD

Introduction

- TSL MicroCT X-ray systems support material characterization studies
- TSL MicroCT systems are similar to systems at Tyndall Reactive Materials Group (TRMG) and Lawrence Livermore National Laboratory (LLNL), and results can be compared.
- Although each location uses standardized processes and procedures, results vary because of the system-dependent factors
- Basis Material Decomposition (BMD) is being developed as a method to reduce system-dependent factors and provide consistent measurements across different platforms at various labs.
- Sponsored by S&T HSARPA Explosives Division (EXD)
 - Awarded to Battelle
 - Phase 1 Complete
 - Phase 2 Ongoing

Motivation: Reduce System-Dependent Factors

MicroCT system-dependent factors:

- system geometry
- applied voltage
- X-ray Tube characteristics
- incident-beam filtration
- collimation
- detector characteristics
- signal processing methods
- beam-hardening correction

What is BMD?

- BMD is an X-ray imaging technique that characterizes materials in terms of the equivalent mass density (ρ) of two (or more) known and well-characterized basis materials
- In practice, two basis materials that have largely different mass attenuation coefficients work best
- For this study, Aluminum and HDPE were selected.

The attenuation of an arbitrary material (i.e. explosives or simulants) is represented as a linear combination of the two basis materials:

$$\frac{\mu(E)}{\rho} = a_1 \frac{\mu_1(E)}{\rho_1} + a_2 \frac{\mu_2(E)}{\rho_2}$$

BMD coefficients

Material	a 1	a 2	RMS
HDPE	1.000	0.000	0.000
Water	0.867	0.126	0.005
Teflon	0.678	0.195	0.006
Mg	0.211	0.776	0.007
Al	0.000	1.000	0.000

Procedure

1) BMD Calibration (HDPE/AI)

BMD Calibration Phantom

Inversion Tables

3) Decomposition

DE CT Sinograms

Inversion Tables

2) Dual-Energy CT Scan

CT Sample Carousel

4) Reconstruction

CT Image

Basis Images

BMD Results: Equivalent Density

BMD Equivalent Density Feature Space

BMD Results: ρ_e and Z_e

Optional Step: convert to Z_e and ρ_e Feature Space

Summary of Phase 1 Results

• ρ_e

- inaccuracy < 1.1% for all materials expect 1" AI (3.1%)
- Standard deviation < 1%
- Z_e
 - inaccuracy was under 2% for all materials
 - Standard deviation < 1%
- Materials characterization results were system—independent comparable to LLNL SIRZ (photoelectric/Compton decomp)
- Satisfactory results were obtained without the need for beamhardening compensation

Part 2: Photon Counting BMD

Introduction

- TSL was in possession of a MultiX ME100 photon counting detector array
- Photon counting is used in the medical field, but it is unknown whether it would be beneficial to security CT screening, whether to replace or supplement integrating detectors
- Project sponsored by TSL internal R&D
 - awarded to Signature Science
 - Phase 1 complete
 - Phase 2 ongoing

Spectral CT System

- 4 photon-counting linear detector arrays with 800µm resolution
- Attenuation information from up to 128 energy bins (20-160keV) is available.

Emulate Current Integration

Reconstructed Image

Energy-Averaged Sinogram

Basis Material Decomposition (BMD)

- HDPE and Aluminum again used as basis materials
- Calibration uses simple step wedges
- Materials outside the $\rho_{\rm e}$,Z_e space of basis materials can have negative density/thickness

Example: Magnesium

- Magnesium decomposition is valid over a wide range of energies, i.e. measurement matches prediction based on HDPE and AI
- $\mu_{Mg} = 0.35 \ \mu_{HDPE} + 0.525 \ \mu_{Al}$

Basis Material Decomposition (BMD)

- Decomposed sinograms are noisy, but noise is correlated.
- Each basis material is mostly absent from the other basis material reconstructions
- Data is renormalized according to the basis materials, HDPE and aluminum, present in the test phantoms.
- Reconstructed objects are segmented and basis material equivalent thicknesses are converted to ρ_e , Z_e values
- Using energy-dependent LACs of the basis materials, basis material equivalent thicknesses for a material are used to estimate its energydependent LAC
 - Traditional dual-energy CT can also calculate LAC values but only at two "effective" energies, using several reference materials

Basis Material Decomposition (BMD)

HDPE Basis

Aluminum Basis

Phantoms

• 5 phantoms of increasing complexity were used

Phase 1 Results: ρ_e and Z_e

- Little variation in ρ_e,Z_e for POM, PTFE, and Mg despite the range of scattering environments

Graphite, in retrospect, was a poor choice of test material.

Phase 1 Results: LAC

 Excellent agreement between NIST and BMD-derived LAC throughout energy range

