

Core Faculty, Center for Clinical Data Science, Harvard Medical School Director, Computational Imaging and Artificial Intelligence lab, Gordon Center, Mass General Hospital

Outline

- Introduction
- Motivation: Using deep learning to improve the image quality of low dose CT
- Low dose CT denoising using deep learning
 - Denoising using cascaded CNN

Low dose CT Reconstruction using deep learning

- Conclusion and Future Work
 - Deep Learning Can Help Low Dose CT Reconstruction!
 - A Better Framework/Network?

CIAI Lab

Image Recon and Analysis

Image Recon:

- PET
- CT
 - Low Dose CT
 - Spectrum CT/Material Decomposition
 - Phase Contrast CT
 - Static CT / Nano CT
- MRI/Optical
- Microscope EM
- Hybrid: PET/CT, PET/MRI

Image Analysis:

- Image Denoising and Restoration
- Segmentation and Registration
- Novel Image Biomarkers
- Radiomics/Radiogenomics
- Diagnosis/Progonosis

LOW DOSE CT AMERICAN ASSOCIATION Crand Challenge CT Clinical Innovation Center

Artificial Intelligence in Medicine

Deep Learning Methodology:

- High Dimensional CNN
- Missing Data Problem
- Learning Annotation
- Transfer Learning
- Novel Network Structures
- Optimization/Compression Networks

Deep Learning Applications:

- Tumor Detection in Digital Pathology
- Emphysema / Pneumothorax Detection
- Lung Cancer Detection
- AD detection
- Diagnosis and Prediction of COPD
- Prediction of the Progression of Diabete
-

irst Place! First Place

CIAI Lab

Image Recon and Analysis

Image Recon:

- PET
- CT
 - Low Dose CT
 - Spectrum CT/Material Decomposition
 - Phase Contrast CT
 - Static CT / Nano CT
- MRI/Optical
- Microscope EM
- Hybrid: PET/CT, PET/MRI

Image Analysis:

- Image Denoising and Restoration
- Segmentation and Registration
- Novel Image Biomarkers
- Radiomics/Radiogenomics
- Diagnosis/Progonosis

CIAI Lab

Image Recon and Analysis

Image Recon:

- PET
- CT
 - Low Dose CT
 - Spectrum CT/Material Decomposition
 - Phase Contrast CT
 - Static CT / Nano CT
- MRI/Optical
- Microscope EM
- Hybrid: PET/CT, PET/MRI

Image Analysis:

- Image Denoising and Restoration
- Segmentation and Registration
- Novel Image Biomarkers
- Radiomics/Radiogenomics
- Diagnosis/Progonosis

Low Dose CT Grand Challenge

- First CT Grand Challenge
- Public Available Data and Parameters
- An Open Test Bed for CT Algorithms

World Wide Participants

Spatially Encoded Non-Local Penalty

Traditional non-local mean

New non-local mean

Typical Low-dose CT

180mAs (normal dose)

90mAs

45mAs

22.5mAs

ICRP recommended 1-year public dose limit: 1mSv

Method	Assumption	Pros	Cons
Mean Filter	I.i.d. Gaussian noise	Simple	Severe Blurring
Total Variation	Piecewise constant	Edge-preservation	Staircase artifacts
Non-local Mean	Self similarity	Better performance	Edge blurring
KSVD	Image patches are low-rank	Even better performance	Time-consuming

Deep Learning

Deep learning can automatically capture important features in the images

People

Deep learning is a subset of machine learning that uses many layers (>= 3
except for input and output layers) of nonlinear units for feature extraction

Bad features for discrimination

Good features for discrimination

Cascaded Learning

- Use cascaded CNN to compensate for the spiky artifacts in the results
 - After a CNN was trained, it was used to process the training dataset then a new CNN was trained with the processed data

1 CNN

8 cascades of CNNs

Results

180mAs (normal dose)

Noisy 45mAs **SSIM** = **0.661**

CNN 45mAs **SSIM** = **0.753**

Deep Learning Based CT Recon

Image Denoising

Pros:

- Real time
- Greatly improved SNR

Cons:

- Chances for generating false positivity
- "What was lost is lost"

Pros:

- Better image quality
- Lower false positivity rate

Cons:

- Slow
- Image noise changes during iterations

Image Reconstruction

Iterative CT image reconstruction problem is usually formulated as

$$\mathbf{x} = \arg \min \|\mathbf{A}\mathbf{x} - \mathbf{p}\|_{\mathbf{w}}^2 + \lambda R(\mathbf{x}; \mathbf{\theta})$$

Fidelity term with system matrix **A**, raw data **p** and noise matrix **w**

Penalty term with penalty function R, its parameters θ and hyperparameter λ

Train Prior Functions with Deep Learning

- Because noises in x changes during the iterations, it has to be learned in an unsupervised way;
- A solution with denoising autoencoders:

$$\mathbf{x} = \arg\min \|\mathbf{A}\mathbf{x} - \mathbf{p}\|_{\mathbf{w}}^{2}$$
$$+\lambda \|\mathbf{x} - f(\mathbf{x})\|_{2}^{2}$$

 $f(\mathbf{x})$ is the trained neural networks

No need for noise simulation

Results

180mAs (normal dose)

Learning 45mAs SSIM = 0.863

Quantitative Results

- SNR SSIM tradeoff for different hyperparameters
 - Higher SNR better noise suppressing
 - Higher SSIM better structural preservation

Best tradeoff point for noise suppressing and structure preservation

Future Works

- "No ground truth" learning
 - Eliminate the need of precise noise modeling
- Reinforcement learning
 - Eliminate the need of hyperparameter tuning for reconstruction
- Diagnosis oriented learning
 - Generate images most suitable for diagnosis
 - Reduce false positive / negative rates

Thanks for your attention!

Li.Quanzheng@mgh.harvard.edu