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Deep recohstructlon of securlty data &
AAPM Grand Challenge
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& Summary

e An iterative algorithm with Spatially Encoded Non-Local Penalty is
developed, and won AAPM Low Dose CT Grant Challenge

* An iterative recon with deep learning based prior is developed and published on
TMI special issue on low dose CT

FBP {norm; al-dose) FBP (quarter-dose) Total Variation

Wu D, et al. Iterative Low-dose CT Reconstruction with Priors Trained by Artificial Neural Network. Transactions on Medical Imaging (accepted).



J Low Dose CT Grand Challenge

First CT Grand Challenge = World Wide Participants
Public Available Data and Parameters — -

An Open Test Bed for CT Algorithms
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Full dose (FDK) [ | Quarter dose (FDK) 1 Proposed ———

Spatially Encoded Non-Local Penalty

Traditional non-local mean New non-local mean




DL based Recon: Clinical Data

e Because noises in X changes during the iterations, it has to be learned in an
unsupervised way;

e A solution with denoising autoencoders:
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Iterative Reconstruction
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truction with Priors Trained by Artificial Neural Network. Transaction.

Wu D, et al. Iterative Low-dose CT Recons s on Medical Imaging (accepted).



{03 160 Jesy

%
DL BASE RECON: TSA DATA

Train ANN prior

CT
s
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Projections F i
l Rebinning Trajfiing
Parallel sinogram / ~30 hand-picked slices
l / without metal artifacts

Filtered backprojection

FC + ReLU
FC + ReLLU
D(E(x))

. FC + ReLU
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Improved image

Deployment Lot ! Iterative reconstruction

A mapping ANN could be trained later

ML Knowledge can be transferred to security, and significantly improve image quality.
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MACHINE LEARNING BASED

RECONSTRUC

ION

 Artificial neural networks (ANN) have great nonlinear mapping ability

e Problem

e Require “ground truth” data: unavailable for security CT

e Solution: unsupervised learning

* Train ANN on clean data

e Apply ANN to “dirty” data during reconstruction

e Train another “mapping” ANN for real-time application
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ANN PRIOR: AUTOENCODER
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 An ANN that maps clean images back to themselves

o
_.g S %-_.
e o i
[

The features mapped to images to
some “computer understandable”
manifold:

It told the computer where clean
data was.

e
*The ANN was trained on patches in practice
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ITERATIVE RECONSTRUCTION

e Penalized reconstruction

X = argmin | ||Ax — b|| + SD(x, F)
& ! W

Noise weighted data loss

Distance between x and trained space

* No explicit metal artifacts reduction applied yet
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PRELIMINARY RESULTS

e Data

e Provided by Boston
University

e |[matron C300 electronic
beam tomography (EBT)
medical CT scanner

e Reconstructed at MGH




PRELIMINARY RESULTS
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PRELIMINARY RESULTS
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CONCLUSION AND FUTURE WORKS

e With unsupervised ANN approach
 We are able to commence training without ground truth
e Promising artifacts reduction potential was shown

* Future improvements
* Incorporate explicit metal artifacts reduction technique
e Train the final “mapping” ANN for real-time application
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Image Recon and Analysis

Image Recon:
« PET
e CT

e Spectrum CT/Material Decomposition
e Phase Contrast CT
e StaticCT /Nano CT
 MRI/Optical
* Microscope —EM
e Hybrid: PET/CT, PET/MRI

Image Analysis:

* Segmentation and Registration
* Novel Image Biomarkers

e Radiomics/Radiogenomics

* Diagnosis/Progonosis
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Thanks for your attention !

Li.Quanzheng@mgh.harvard.edu
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