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Benefits for TSA

 Metallic/dense objects cause severe metal
artifacts

e EXisting metal artifact reduction (MAR)
algorithms are imperfect

 Relevant to airport scans of luggage & items
for high sensitivity/specificity/throughput

e Smart techniqgues (machine learning/deep
learning/CNN/etc.) can improve MAR
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Metal Artifact Reduction

Metal objects corrupt CT images
» Beam-hardening, scatter, noise

Projection completion-3

E. Boas and D. Fleischmann,
Imaging. Med., 4(2), 2012

terative reconstruction®
mage-based post-processing®

mage quality remains insufficient (RT planning®)
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Toy Example of Deep MAR
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True Image with True Data with Metal Trace

Metal Implant

Reconstructed via Learned Data Eliminating Metal Trace
Deep Learning

Wang G: Perspective on Deep Imaging, 2016
http://ieeexplore.ieee.org/document/7733110/



Learning in the Data Domain
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- — .. Metal- Amfact Reduction Using Deep-Learning
~ Based Sinogram Completion: Initial Results

Bernhard E. H. Claus, Yannan Jin, Lars A. Gjesteby, Ge Wang, Bruno De Man



Learning in the Image Domain

Input image: Already with good MAR

Output image: Further MAR through CNN

CNN: Five convolution and five deconvolution layers

Supervised learning: Ground truth from simulation and/or experiments
3x3 convolution kernel denoted by k, number of filters denoted by n
Batch normalization (BN) in the first three layers, ReLU for activation
~50,000 32x32 patches for training; 12,000 for testing

Caffe (UC Berkeley): One million iterations, with learning rate
initialized to 10 and decreased by 0.5 every 100k iterations
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Data Generation

Voxelized hip phantoms from the Visible Human
Project

Industrial-grade CT simulator (CatSim, GE
Global Research Center)

40 slices (5122) through abdomen (a pilot study)

Fan-beam geometry
Metal-free (ground truth)

= 100 keV monoenergetic photons,
300 mA, 720 views

Titanium-added
= 120 kVp, 300 mA, 720 views
= NMAR algorithm applied




Case 1: Medium Diameter

Ground Truth Uncorrected NMAR CNN

SSIM 0.533 0.744

Window: [-250 350] HU PSNR 22 878 25.361



Case 2: Large Diameter

Ground Truth Uncorrected NMAR CNN

SSIM 0.523 0.700

Window: [-250 350] HU PSNR 21.330 22.901



Future: With WGAN
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TensorFlow

Hyperparameters:
» Learning rate: 104  Truth

Image

> Batch size: 128

» # of epochs: 100 .—'
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Future: Without WGAN
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A Geometric View of Optimal Transportation and Generative
Model

NalLei* KehuaSuf LiCuit Shing-Tung Yau® David Xianfeng Gu 1

Abstract

In this work, we show the intrinsic relations between optimal transportation and convex geometry,
especially the variational approach to solve Alexandrov problem: constructing a convex polytope with
prescribed face normals and volumes. This leads to a geometric interpretation to generative models, and
leads to a novel framework for generative models.

By using the optimal transportation view of GAN model, we show that the discriminator computes
the Kantorovich potential, the generator calculates the transportation map. For a large class of transporta-
tion costs, the Kantorovich potential can give the optimal transportation map by a close-form formula.
Therefore, it is sufficient to solely optimize the discriminator. This shows the adversarial competition
can be avoided, and the computational architecture can be simplified.

Preliminary experimental results show the geometric method outperforms WGAN for approximating
probability measures with multiple clusters in low dimensional space.



First Workshop

RPI/CBIS/BIC
Deep Reconstruction
Workshop

Coordinators: Ge Wang, PhD, Hongming Shan, PhD

Abstract: Computer vision and image analysis are both great examples showing successes of machine
learning especially deep learning. Computer vision focuses on surfaces, image analysis deal with existing
iImages, and in contrast to both tomographic reconstruction produces images of internal structures from
indirect data. Recently, deep learning techniques are being actively explored for tomographic reconstruction
by multiple groups worldwide, with encouraging results and potential biomedical impacts. We believe that
deep reconstruction is a next major target of deep learning. Sponsored by Center for Biotechnology &
Interdisciplinary Studies/Biomedical Imaging Center/RPI's NIGMS T32 Program, we organize the regional
workshop for brainstorming and collaboration.

Date: This workshop will be held Nov. 18-19, 2017.
Place: CBIS Auditorium, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180
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