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The Goal: Stand-off detection of energetic materials through beam-
scanning MIR spectroscopic imaging of objects in motion. 

The Technology: Hardware and software for image reconstruction through 
sparse sampling in space, time, and wavelength.
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• Proposed activities will integrate spectral acquisition with spatio-temporal 
sparse sampling. Key components include:

• Software for spectral acquisition with arbitrary scan patterns (e.g., 
Lissajous).

• Extension of reconstruction software for problems of arbitrary 
dimensionality. 

• Characterization of the instrument using model compounds.
• Assess compatibility with back-scattered light detection.
• Integration of multiple co-propagating QCL arrays for improved duty 

cycle and spectral coverage.
• Redesign the instrument for implementation in a portable platform. 

Note: Beam-scanning mid-infrared light presents no significant health risks 
from laser exposure (well below the OSHA recommended MPE for far-
infrared). 
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1250 cm-1: H-C-H wag

Single Spectrum - 9.6 μs Averaged Spectrum – 1.6 ms

1250 cm-1: H-C-H wag

The “fingerprint” region of the spectrum
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Sample

Scan 
Head

GM = Germanium Window
QCL = Quantum Cascade Laser
Nd:YAG = visible laser, 532nm
PM = Parabolic mirror
PD = photodiode

PD

QCL

NdYAG

PM PM

GW

PDGW

High-speed (5 kHz bandwidth) 
galvanometer mirrors enable 
rapid random access within the 
field of view.
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In-Painting: Sparse sampling enables recovery of a multi-dimensional image using 
knowledge from data acquired at other positions/times/wavelengths.

Model-based iterative reconstruction (MBIR): Will enable recovery of high-quality images 
across multiple dimensions from sparsely sampled data.

100mm

Wire 
mesh

20 µs / pixel MIR  
spectroscopy (5.2s)

5 µs / pixel MIR  
spectroscopy (1.2s)
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Sullivan, S.Z.; Muir, R.D.; Newman, J.A.; Carlsen, 
M.A.; Sreehari, S.; Doerge, C.; Begue, N.J.; Everly, 
R.M.; Bouman, C.A.; Simpson, G.J. Opt. 
Express.2014, 22, 24224.

Model Based Image Reconstruction (MBIR)

Damien Garcia
University of Montréal

Multidimensional Discrete Cosine 
Transform (DCT) Reconstruction

Garcia, D. Computational Statistics & Data Analysis 54 
(2010), p. 1167-1178. 
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• Fully automated smoothing procedure 
for uniformly sampled datasets

• Allows fast reconstruction of data by 
means of the discrete cosine 
transform

• Estimates pixel value based on values 
of surrounding pixels in arbitrary 
dimensions (e.g. X, Y, time, 
wavelength, etc.)

• Maximum a 
posteriori (MAP) 
estimation with a 
generalized 
Gaussian Markov 
random field 
(GGMRF) prior 
model

• Adapted for 3D 
space-time

• Iterative model-
based image 
reconstruction 
algorithm

• Estimates pixel value 
based on values of 
surrounding pixels in 
X, Y, and time.
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100 µm
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CH2Cl2

H2O

100mm

Classification was performed by 
PCA followed by k-means 
clustering (2 clusters).

Image stack of laser 
transmittance as a function 
of mid-infrared wavelength.

100mm

Acquisition settings: 20 µs integration time, 512×512 images, ~5s imaging time
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1 ms 2 ms 10 ms 20 ms

Raster Scan Imaging

Lissajous Trajectory 
Imaging
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