Multi-Spectral Infrared Sensing Microsystems

Prof. Matteo Rinaldi

rinaldi@ece.neu.edu https://web.northeastern.edu/nemslab/

Department of Electrical and Computer Engineering Northeastern University Boston, MA 02115, USA

10/18/2017

Northeastern Sensors & Nano Systems Lab

State-of-the-art IR detector technologies

	Photon Detector	Thermal Detector (uncooled)			
	Cooled	Thermoresistive	Pyroelectric	Thermoelectric	MEMS resonant
Example	HgCdTe(MCT) / Quantum well	Microbolometer	PIR sensor	Thermopile	AlN Nano Plate Resonator
NEP	< pW/Hz ^{1/2}	~100s pW/Hz ^{1/2}	~100s pW/Hz ^{1/2}	~ nW/Hz ^{1/2}	~ 10s pW/Hz ^{1/2}
Speed	ps - µs	10s ms	10s ms	10s ms	~ 10s µs
Pixel Size	30 × 30 μm²	25 × 25 μm²	$40 \times 40 \ \mu m^2$	$200 \times 200 \ \mu m^2$	~ 30 × 30 μm²
Selectivity	Broad/Narrow	Broadband	Broadband	Broadband	Narrowband
 High sensitivity to external perturbations High Q guarantees ultra-low noise Lithographically defined absorption band 					

Piezoelectric Resonant Thermal Detector

Northeastern

Integration of ultrathin narrowband absorber

Microfabrication

a=1.2 or 1.3 μm , Γ =2.2 μm , W=60 μm , W_0=20 μm

Z. Qian, S. Kang, V. Rajaram and M. Rinaldi; Proceeding of the IEEE Sensors 2016 Conference (Sensors 2016), Northeastern pp. 1-3, doi: 10.1109/ICSENS.2016.7808614

Experimental results

Frequency response to IR radiation

Z. Qian, S. Kang, V. Rajaram and M. Rinaldi; Proceeding of the IEEE Sensors 2016 Conference (Sensors 2016), pp. 1-3, doi: 10.1109/ICSENS.2016.7808614 $R_{th} \approx 2.4 \times 10^{5} \text{ K/W}$ $\tau \approx 3.5 \text{ ms}$ $\Delta f_{noise} \approx 3.7 \text{ ppb/Hz}^{1/2}$ $NEP \approx 633 \text{ pW/Hz}^{1/2} \text{ (at 4.7 } \mu\text{m)}$

Spectral Selectivity for Trace-Gas Emission

- Absorbers tuned to match 5 major trace-gas emission
- FWHM < 5% allows a superior selectivity for closely-located IR signatures
- Peak wavelength tuned only via lithography

S. Kang, Z. Qian, V. Rajaram, A. Alu' and M. Rinaldi, Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2017), pp. 886-889. doi: 10.1109/TRANSDUCERS.2017.7994191.

Zero-Power Infrared Digitizing Sensors

Nanotechnology, 12, 969-973, doi:10.1038/nnano.2017.147

Northeastern

Plasmonically-enhanced Micromechanical Photoswitch (PMP)

- Micromechanical switch selectively triggered by IR radiation at a specific spectral wavelength through a plasmonicallyenhanced thermomechanical coupling
- Immune to ambient temperature changes and residual stress

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. McGruer and M. Rinaldi, "Zero Power Infrared Digitizers Based on Plasmonicallyenhanced Micromechanical Photoswitches", Nature Nanotechnology, 12, 969-973, doi:10.1038/nnano.2017.147

Spectral Selectivity

Acknowledgment

Research Scientist:

- Dr. Cristian Cassella

Postdocs:

- Dr. Zhenyun Qian
- Dr. Tao Wu

Ph.D. Students:

- Guofeng Chen
- Gwendolyn Hummel
- Ryan Sungho Kang
- Vageeswar Rajaram
- Yao Yu
- Bernard Herrera Sokup
- Michele Pirro
- Sila Deniz Calisgan
- Piotr Kulik
- Flavius Pop
- Giuseppe Michetti

Collaborators:

- Prof. Nick McGruer
- Prof. Andrea Alu'

Young Faculty Award N66001-12-1-4221 DARPA RF-FPGA Program N66001-14-1-4011

DARPA NZero Program HR0011-15-2-0048

HR0011-15-C-0138

DARPA SPAR Program HR0011-17-2-0002

DHS Center of Excellence

W.M. KECK

W.M. Keck

Foundation

CAREER Award ECCS-1350114 NeTS Small CNS-1618731 MRI

Northeastern University Robert Shillman Foundation