18 October, 2017

Strengths and Challenges of X-ray Diffraction Imaging

Jens-Peter Schlomka

XDi stands for X-ray Diffraction Imaging

- "X-ray Diffraction" is a well-established scientific method to identify molecular structures in material science and biology
- XDi enables for the first time using this technology for fast baggage screening

Conventional X-ray imaging

Röntgen 1896

X-ray diffraction revealing crystal structure

Franklin 1950's Crick, Watson, Wilkins

Noble prize for DNA structure revealed by X-ray diffraction

XDi - Maturity

- "Performance" is connected to the market & regulatory requirements
- Diffraction is emerging technology
- Performance has not yet reached saturation and the achievable limits are to some extent unknown

CT density-Z_{eff} Feature Space

X-ray Diffraction: "What difference does it make?"

	Feature	Comment
Orthogonal technology to CT / X-ray	XDi is the only method with high penetration, which probes different features than CT	 XDi can be (and is) applied to resolve CT false alarms without just repeating the measurement As ultimate solution a combination of CT and XDi features can be used for extreme low-false alarm method
Density- independent discrimination	Detection of lighter materials Detection of materials with varying density and Zeff	 Home-made explosives using varying recipes → Recent test @ ICT Mixing of materials with high/low density/Zeff
Size-independent discrimination	No size discrimination, but material identification	 For CT (and transmission X-ray) size is a very dominant discriminating factor XDi could sum up all voxels of identical material even if not connected
Material identification	positive identification of other substances (Libatteries, drugs, currency)	XRD3500 has already been used at customs (Heathrow)Study on counterfeit medicine

XDi – application 1

	Feature	Comment
Orthogonal technology to CT / X-ray	XDi is the only method with high penetration, which probes different features than CT	 XDi can be (and is) applied to resolve CT false alarms without just repeating the measurement As ultimate solution a combination of CT and XDi features can be used for extreme low-false alarm method

Automatic alarm resolution (System of systems)

XDi – application 2

	Feature	Comment
Density- independent discrimination	Detection of lighter materials Detection of materials with varying density and Zeff	 Home-made explosives using varying recipes → Recent test @ ICT Mixing of materials with high/low density/Zeff
Size-independent discrimination	No size discrimination, but material identification	 For CT (and transmission X-ray) size is a very dominant discriminating factor XDi could sum up all voxels of identical material even if not connected

- XDi "high security" product for checkpoint or HBS
 - Stand-alone or in SoS config
 - Speed 10cm/s 20cm/s

(→ May become mainstream?)

XDi – Status

CBS: Three XDi prototypes operational

• Hamburg, TSL (DHS), Israel (on its way to Soreq)

HBS: One prototype

Developed under a DHS-funded project

Features:

- Dual energy dual view x-ray images for visual inspection of prohibited items
- Operator workstation and re-check station

Certifications / data collections:

- ECAC C1 achieved, C2 WiP, C1+/C4 prepared
- XDi-HBS DC's and detection algorithms delivered

XDi – Technical Challenges

- It is (and will always be?): photon statistics translating into speed
 - XDi works in full-bag mode between 10cm/s (today) and 20cm/s
 - Too fast speed "only" generates more dark alarms ("photon starvation alarms")
 - Let's have the coded aperture vs. strong collimation discussion now or after the talk
- Detection potholes exist for diffraction as for any other technique, but different and maybe less?
- Technical challenges are decreasing
 - It used to be the detectors, but CZT, CdTe and low-noise electronics work
 - Multi-focus has shown it works @140kV and 180kV
 - Supply chain exists
 - Still: power consumption (~5 10kW)
- Cost is comparable or higher than CT
- Usefulness (and therefore success) of XDi depends on application scenario: "fast vs. accurate" (also to consider human factor vs. machine learning)

Further work: Towards the "real strength"

- Focused experimental tests addressing future security demands
 - Extended threat lists including relevant HMEs
 - Other masses
 - Camouflaged scenarios
- First tests carried out at ICT, Germany
- Working with EU-regulators on proving performance on future standards
- Tests planned for Soreq, Israel, and US test-site
- → First results show that material-specific detection starts to pay back!

Challenges: "You just haven't earned it yet, Baby"

Technology development

- Minimizing technology risk, but less so market risk
- Public Funding opportunities

Product development

- Decision based on market opportunities & risk
- Internal Funding

Product Development – yes or no?

- Market opportunities are measured in terms of incoming orders in the next x years (x is a small number)
- Incoming order forecasts are requested from customers
- Estimates are particularly difficult for non-incremental new products, which require change of procedures, ConOps, even lane concepts etc.
- This gives bias towards incremental changes and leaves opportunities for "disruptive improvements" behind

XDi deployment status

- Technology readiness would enable to develop as a product
 - XDi CBS within 2-3 years
 - X-ray tube industrialization still defines the critical path
 - XDi HBS within 3-4 years
 - Continuation of DHS-project would be required
 - (XDi Cargo within 4-5 years)
 - Patents and concepts exist
- Smiths Detection has decided to discontinue all XDi developments

Thank you for your attention!

Part of this work was funded by the DHS under contract HSHQDC-11-C-00014

Thanks a lot!

References

- All image copyrights are with Smiths Detection except
 - Slide 2, hand X-ray:

https://en.wikipedia.org/wiki/Wilhelm_R%C3%B6ntgen

Slide 2, DNA diffractogram:

http://www.bbc.com/news/health-18041884

Slide 2, Helical structure:

http://banaszakdiabms.weebly.com/genetics.html

Slide 11: Sailing fleet:

Jens-Peter Schlomka, 2017

• Slide 14: light bulb:

https://www.touts.com.br/arts/318-there-s-a-light-that-never-goes-out