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Metal Artifacts 
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 Metal:  

 Clinical: dental fillings, hip prostheses, surgical clips, ... 

 Security: metallic objects in luggage 

 Artifacts: 

 Clinical: poor image quality, low confidence for diagnosis 

 Security: obstacles for target recognition 

 Reason: beam hardening, noise, scatter,...   

 Complexity: different metal sizes, positions, materials 

 Methods: data correction, data replacement, iterative reconstruction 

 Idea: reduce artifacts using deep neural network. 

 

 

 



Open MAR framework 
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 Key: Fuse complementary information provided by different 

methods 

 Advantages:  

 Open framework: incorporate various MAR methods 

 Outstanding performance: restore anatomical structures 

 Data-driven: robust 

 

  Original Image Beam Hardening Correction 

(BHC) 

Linear Interpolation (LI)  
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Open MAR Framework: 
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 Input: the original, BHC and LI image patches (64×64×3) 

 Target: reference image patches (64×64×1) 

 Convolutional kernel: 3×3  

 Padding: 1 

 ReLU 

 

 

 

Convolutional Neural Network (CNN) 

Architechture of the convolutional neural network for metal artifact reduction.  
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Illustration of the CNN image and prior. 
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Comparison of sinogram completion. An ROI is enlarged and displayed with 

a narrower window. 
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A 59 year-old female with diffused subarachnoid hemorrhage (highlighted by the 

red square). CT angiography demonstrated a left middle cerebral artery 

aneurysm, which was clipped. The display window is [-100 200] HU. 

Clinical Data 



Clinical data v.s Security data 

9 

Karimi, Seemeen, et al. "Metal artifact reduction for CT-based 

luggage screening." Journal of X-ray science and technology, 2015. 

Metal: 

Background: 

Purpose: 

Small, single material Large, multiple materials 

Soft tissue, bone Multiple materials 

(limitation: 1st order BHC) 

(limitation: tissue processing) 

Precise attenuation coefficients Target recognition 
(Easier) 



Limitations and Future Work 
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 Advantage: Semantic segmentation  

 Metal segmentation: Deep learning can segment out metal 

implants more precisely 

1. Deep learning based metal segmentation 

2. Apply advanced model (e.g., ResNet, GAN) 

 Advantage: A more powerful CNN model  

 Distinguish metal artifacts from anatomical structures better. 

 
3. Other artifacts 

 Beam hardening, scattering, motion artifacts, etc. 
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Open Source Code 

https://github.com/yanbozhang007/CNN-MAR 

 

https://github.com/yanbozhang007/CNN-MAR
https://github.com/yanbozhang007/CNN-MAR
https://github.com/yanbozhang007/CNN-MAR
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Thank You ! 



Backup Slides 
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Experiments 
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 74 DICOM images  

 15 metal shapes 

 100 cases 

 Metal-free, metal-inserted, BHC 

and LI corrected images 

 Equi-angular fan-beam 

 120 kVp 

 Beam hardening and Poisson 

noise 

 

 

Build a Metal Artifacts Database 



Experiments 

15 

 Case 1: hip prostheses 

 Case 2: fixation screws 

 Case 3: dental fillings 

 Same simulation parameters to that of cases in the database  

 

 

 

Numerical Simulation 

 A 59-year old female patient with a surgical clip  

 Siemens SOMATOM Sensation 16 CT scanner  

 120 kVp and 496 mAs 

 1160 projection views per rotation 

 672 detector bins in a raw 

 

 

 

Real Data 
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Case 1: bilateral hip prostheses.  

Simulation 

[1] E. Meyer et al., "Normalized metal artifact reduction (NMAR) in computed tomography," Medical Physics, 2010. 

Prior images: 
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Case 2: two fixation screws and a metal inserted in the shoulder blade. 



18 

Case 3: four dental fillings. 
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