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MIMO ARRAY: 400 Coherent Channels 
Front view 

• Video: number of people in scene 

• 3D stereo camera: imaging location for 
mm-wave 

• mm-Wave: looking under clothing 
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7 Experimental mm-wave Image (1 CRA) + joint 3D video 

Real video 3D Stereo camera + joint detection 

2. Imaging of a metallic target 



7 Experimental mm-wave Image (1 CRA) + joint 3D video 

Real video 3D Stereo camera + joint detection 



 
 
 

MIMO ARRAY: 400 Coherent Channels 

Receiving Array 

Transmitting  Array 

3D mmWave Imaging 

Image 
segmentation 

CNN Classifier 
via Transfer 

Learning 

Threat No-Threat 

3. Overview Deep Learning for threat detection 

[1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet 
classification with deep convolutional neural networks." Advances in neural 
information processing systems. 2012. 

 
 
 



• 3D Data dataset is projected into 16 views.  

• Reflectivity and junctions are used to segment the image into several 
regions: this presentation will focus on the chest.  

• Pre-trained CNN Alex Net (1000 classes) used for transfer learning. 

• Re-train Alex Net using five new layers (2 classes). 
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3. Deep Learning: Cross-validation 
• Training: 150 images (75 from each class) are randomly selected 

• Cross-validation: 30 images (15 from each class and different 
from the training ones) are randomly selected for testing. 
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Labels? 

Running Accuracy Log loss 

#1 90.00 % 0.2130 

#2 96.67 % 0.1861 

#3 76.67 % 0.3873 

#4 86.67 % 0.3609 

#5 96.67 % 0.1693 

#6 83.33 % 0.3971 

#7 90.00 % 0.2522 

#8 83.33 % 0.3561 

#9 100.00 % 0.1253 

#10 90.00 % 0.2523 

Mean  
/ std 

90.00 %  
/ 7.27 % 

0.2558  
/ 0.0933 
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4. Conclusions 
• High sensing capacity imaging using compression at the physical layer 

– Using CRAs, Vortex meta-lenses, MMA, random cavities. 

• Fused 3D stereo cameras and mm-wave images. 

– Fast compressive sensing. 

– Norm-1 regularized imaging using distributed ADMM. 

• Deep Learning for threat detection 

– Deep learning directly applied to the mm-wave image. 

– Training is done using available datasets  

– Additional datasets will be collected in the SICA-LAB 

• The proposed system, imaging algorithms, and DL detection can be easily 
deployed in the field. 

• The performance of the system can be tuned based on the following: 

– Speed of the target 

– Resolution  

– Cost  

• Secondary inspection may require additional video analytics (Prof. Octavia Camps 
- ALERT) for tracking a target after flagging. 
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