Characterization of new threats and the application of explosive simulants

ALERT ADSA 19, Northeastern University

October 16-17, 2018

This research was funded by the Science & Technology Directorate of the Department of Homeland Security

Larry McMichael, Harry Martz, Jeff Kallman, Sabrina DePiero

LLNL-PRES-760286

When the adversary adapts, how do we respond?

Need to reduce the time from identification to deployment

- Mission: Rapid adaptation of fielded equipment to detect evolving materials of interest
- Challenges: Field response before adversary can act
 - Material identification: which materials are adversaries are likely to use
 - Extent of testing: which formulations, synthesis methods, and preparations need to be prepared and tested
 - Material characterization: determine x-ray features, explosive properties
- There are no simple, perfect solutions, but there are approaches that could provide more rapid risk mitigation
 - Adaptive ATR algorithms: supplement certified algorithms
 - Application of simulations: reduce time to data collection on vendor systems
 - Requires a new testing and certification paradigm, aspects of which are already in development

Path to deployment is complicated, begins with identification

- Subsequent steps may vary depending upon what is known about the threat
 - Previously known or new application
 - Form: e.g., press, cast
 - Density range
 - May be specific configuration (density, packaging, etc.) or broad in scope

TSA Acceptance and inclusion in Detection Standards

Vendor Algorithm
Development

Assess what needs to be tested

- 3. Evaluate which formulations, synthesis, and preparations are of interest
- 4. Determine which combinations bound the features of interest

Formulation and preparation of material(s)

Data Acquisition for each material

Data Analysis

Material or aggregate ROR

- Theoretical x-ray feature estimates based upon chemical composition (e.g., ZeCalc)
- Density variations according to preparation method (e.g., poured, tapped, tamped, pressed, melt cast)
- Different mixtures of fuel(s) and oxidizer

TSA Acceptance and inclusion in Detection Standards

Vendor Algorithm Development

Determine how to safely handle the material:

Contact or remote operations

Threat Identification

Modeling

Down Select

Safety/Synthesis

Formulation and preparation of material(s)

Data Acquisition for each material

Data Analysis

Material or aggregate ROR

TSA Acceptance and inclusion in Detection Standards

- Time intensive process for unknown, not well characterized, and sensitive materials
- Facilities available to handle the material vary depending upon the sensitivity

Vendor Algorithm
Development
CRT/CERT and
Deployment to fleet

Specify what needs to be detected

Threat Identification

Modeling

Down Select

Safety/Synthesis

- 5. Acquire x-ray data on laboratory (MicroCT) and deployed explosive detection systems for multiple specimens from different batches
- 6. Analyze data for variations, proximity to other materials of interest in x-ray feature space
- 7. Specify the expected range in the material's x-ray features

Formulation and preparation of material(s)

Data Acquisition for each material

Data Analysis

Specify x-ray features

 Relatively quick process once specimens are available

- Scans on vendor systems may require larger specimens than laboratory systems
- Process may end if existing algorithms detect the new material

TSA Acceptance and inclusion in Detection Standards

Vendor Algorithm
Development

Requirements formalized and equipment deployed

Threat Identification

Modeling

Down Select

Safety/Synthesis

Formulation and preparation of material(s)

Data Acquisition for each material

Data Analysis

Specify x-ray features

Typically, a time intensive process

Significant expense to vendors and government

Algorithm alterations may increase P_{FA}

Limited margins between P_D and P_{FA}

8. TSA sets detection standards

9. Vendors adapt algorithms to include new material

10. Algorithms are tested (DT&E) and certified (IT&E)

11. Capability is deployed to the field

TSA Acceptance and inclusion in Detection Standards

Vendor Algorithm
Development

Spiral 1: Initial detection capability based upon theoretical features from chemical composition

Threat Identification

Modeling

Down Select

Safety/Synthesis

Limited but rapid detection capability

- Requires Adaptive ATRs, ability to push modifications to the field
- May have a significant impact on P_{FA}
 - How much increase is tolerable and for how long?

Formulation and preparation of material(s)

Data Acquisition for each material

Data Analysis

Material or aggregate ROR

Can the impact on P_D and P_{FA} be estimated prior to inserting modified algorithms into the field?

 Standardized third-party software interface to push one modified algorithm?

TSA Acceptance and inclusion in Detection Standards

Vendor Algorithm Development

Spiral 2: Use non-validated simulants for sensitive and poorly characterized materials

Threat Identification

Modeling

Down Select

Safety/Synthesis

Formulation and

 Bypasses time required to determine safe handling procedures

 Mean properties from theoretical estimates, but feature distributions may lack similarity

Data Acquisition for each material

preparation of material(s)

Data Analysis

Material or aggregate ROR

 DHS currently developing simulant validation procedures and metrics

- o Purpose specific
- Requires a quick process for determining a simulant formulation to be useful
- Vendors could safely collect data on their systems
- · Risk associated with using non-validated simulants

TSA Acceptance and inclusion in Detection Standards

Vendor Algorithm
Development
CRT/CERT and

Deployment to fleet

Spiral 3: Use validated simulants once material's features have been measured

Threat Identification

Modeling

Down Select

Safety/Synthesis

Formulation and preparation of material(s)

Data Acquisition for each material

Data Analysis

Material or aggregate ROR

 Potentially less risk, depending upon how stringent the simulant validation criteria are

- Reduced risk with respect to producing and handling sensitive materials
- Potentially utilized in certification

- Validated formulation could be based upon small specimens and data acquired on laboratory systems
- Vendors could use the simulant to collect data for larger samples on their system

TSA Acceptance and inclusion in Detection Standards

Vendor Algorithm

Development

CRT/CERT and
Deployment to fleet

