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So What, Who Cares 

 What space/topic/area is being addressed?  

– Detection and identification of chemical residues on luggage at the checkpoint  

– As part of APEX Screening at Speed initiative 

 What problem have you solved? 

– Identification of specific “target regions” on luggage; i.e., handles, zippers, etc. 

– Detection and classification of chemicals of interest from hyperspectral data cube 

 How have you solved the problem? 

– Modern neural architectures for region identification from camera or video data 

– To date: classical statistical processing for identifying chemically anomalous regions 

 So what? Who cares? 

– Promising approach to a very hard problem, real-time standoff trace chemical detection and 

mapping, combining singularly strong hardware with state-of-the-art processing 

– Strong example of academic/industrial collaboration to address significant problems 
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The Problem and Approach 

Locate 
Feature(s) of 

Interest 

Direct the  
Analysis Beam 

Chemical 
Examination of 

Feature(s)  

Report Chemical 
ID & Confidence 

Problem:  Detecting and identifying trace amounts of explosives  

        on luggage contact points  

Approach: 
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Target ID – A Deep Learning Approach 

Regional Convolutional Neural Net 

1. A Convolutional Neural Network 

(CNN) is for image classification 

2. An R-CNN is for object detection 

3. A typical CNN can distinguish the 

class of an object, but not where it 

is located in an image 

4. An R-CNN can take in an image, 

and correctly identify where the 

main objects (via a bounding boxes) 

are located 

R-CNN does what we do intuitively:  it 

proposes boxes in the image (in this case 

about 2000 of them) and see if any of them 

actually correspond to an object 
 

       Uses process called Selective Search 

Image from: Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic 

segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. 
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Implementing R-CNN 
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Initial Processing Results 

• Now that we have identified the region to 
probe, we need to identify possible chemical 
residues quickly 

• Solution: Pendar’s four array quantum 
cascade laser source covering the long wave 
IR (6.5-11𝜇m) integrated into portable 
scanner 

 Example: Sharpie on sandblasted aluminum 

 Processing: statistical anomaly detection 
– Model background data cube as Gaussian 

random tensor 

– “Normalize” test data: subtract mean and divide 
by standard deviation in a multivariate sense 

– Large results = “not background” 

 Continued work on more refined processing 
– If know “not background,” can we say what it is? 
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Final processed results 

• Each pixel is a measure of the 

statistical deviation of the data at that 

location from the background  

• Lighter shades indicate larger 

deviation and more anomalous 

behavior 

• Calculation is a multivariate 

generalization of “subtracting the 

mean and dividing by the standard 

deviation” 
1 mm 

Camera image Processing output 
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Toward Chemical Residue Identification: 

 First Trace Sample:  PETN on Aluminum  

 (53µg / cm2) 

 Data = mean (over wavelength) photon counts 

 Data collected at non-normal incidence to reduce speckle 

 Clean Al: low returns as most incident photons forward scattered  

 PETN+AL: less like a mirror and more photons scattered back to detector 
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Data: Clean Al Data: PETN+Al 
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Sample 

2.5 cm 
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Toward Chemical Residue Identification: 

 Second Trace Sample:  PETN on Vinyl 
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Data: Vinyl Background HSI Data: Vinyl + PETN HSI 

Sample 

2.5 cm 

1 mm 
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Conclusion 

 Problem of interest: standoff identification of trace chemicals at the checkpoint 

 Challenges 
– Automated identification of regions of interest such as handles and zippers 

– Hyperspectral sensor meeting CONOP requirements 

– Signal variability caused by physics of light-substrate-target interactions 

 Accomplishments 
– Neural approach to region identification 

– Quantum Cascade Laser technology, handheld-sized, battery-powered hyperspectral 
imager 

– Initial statistical approach to identification of chemical anomalies 

– Preliminary data suggesting sensitivity to chemicals of interest 

 Ongoing effort 
– Refinement of algorithms 

– From anomalies to identification of specific compounds 

– Test, validation, and refinement 
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BACKUP 
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Implementing R-CNN 

Create Database 
Choose 

Architecture 
Train Network Iterate/Test 

Database Creation 

1.MATLAB script written to 

download ~10,000 images 

from Zappos.com 

2.Database includes:  carry-

ons, backpacks, and 

suitcases 

Architecture 

1.Faster R-CNN architecture was used 

2.R-CNN uses Selective Search to propose 

possible regions of interest and a standard 

CNN to classify and adjust them 

3.Faster R-CNN accelerates the search 

process by using a region proposal network 

in conjunction with the Fast R-CNN detector 
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Implementing R-CNN 

Create Database 
Choose 

Architecture 
Train Network Iterate/Test 

Training using Tensor Flow 

tools from Google 
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The Pendar Hyperspectral System 

• Now that we have identified the region to probe, we need to identify possible chemical residues quickly 

• Solution: Pendar’s four array quantum cascade laser source covering the long wave IR (6.5-11𝜇m) 

integrated into portable scanner 

 

SOME SPECS: 

Volume = 0.08 cubic feet 

Weight = 4.5 Pounds 

Handheld Compatible 

One Moving Part 
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Sharpy on Sandblasted Aluminum: 977 cm-1  
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Sharpy on Sandblasted Aluminum: 1102 cm-1  
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Sharpy on Sandblasted Aluminum: 1258 cm-1  
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Toward Chemical Residue Identification: 

  First Trace Sample:  PETN on Aluminum  

  (53µg / cm2) 

The experimental spectrum was obtained from 

averaged over the image coordinates  

𝑚𝑒𝑎𝑛(𝐼 𝑥, 𝑦 )

𝑚𝑒𝑎𝑛(𝐼𝑏𝑔 𝑥, 𝑦 )
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PETN on Aluminum Experimental Model Thicker Layer
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• Plots demonstrate light 

attenuation due to PETN 

• At photon energies corresponding 

to vibration transition frequencies 

of PETN molecules, less light 

returning because of PETN 

absorption 

• Simple layered medium model 

model validates experimental 

results 



20 

First Trace Sample:  Interpreting the Results 
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… continued 

Taking the total reflectivity for an infinite number of passes: 

 A geometric series of R’s and T’s for layers i and j (Rj is assumed 

to be constant across spectrum in the next slide) 
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