

SCHOOL OF MEDICINE

Photon Counting Toolkit (PcTK)

Katsuyuki "Ken" Taguchi, Ph.D. The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine (Baltimore, MD) pctk.jhu.edu, ken.pctk@gmail.com

Disclosure and acknowledgment

Disclosure

- Research support: Siemens Healthineers
- Consultant: LISIT, JOB Corporation
- Former projects: DxRay, Toshiba/Cannon, Philips

Acknowledgment

- Drs. Karl Stierstorfer, Christoph Polster, Steffen Kappler, Thomas G. Flohr, Matthew K. Fuld, and George S.K. Fung (Siemens)
- Okkyun Lee, Ph.D. (former JHU and current DGIST, South Korea)
- JHU-2016-CT-1-01-Taguchi_C0022
- Carl R. Crawford, Ph.D. (Csuptwo, LLC)

So What? Who Cares?

- Space: Photon counting detector (PCD)-based security systems
- Problem: Lack of good <u>PCD simulator</u> with realistic spectral distortion
- Solution: Developed photon counting toolkit (PcTK)^[1]
- Results:
- PCD model: Excellent agreements with a Monte Carlo simulator, which has good agreement with a PCD.
- Simulator: A wrapper for correlated/un-correlated noisy data generator and CT workflow wrapper
- TRL: 9
- Contact: <u>pctk.jhu.edu</u> and <u>ken.pctk@gmail.com</u>

[1] Taguchi K, et al., Medical Physics 2018;45(5):1985–1998

Why simulation?

- Lower cost than building and optimizing prototype systems
- Faster time-to-market, because algorithms for correction and calibration can be developed earlier, in parallel to hardware development
- Identifies products earlier that will never achieve required performance and never reach the maintenance
- What's available?
- Digital phantoms (Taly Gilat-Schmidt¹, XCAT^{2,3}, Forbild⁴)
- X-ray system simulator (TGS¹, ASTRA toolbox⁴, etc.)
- . Wthatysemissing/ALERT/strategic_studies/ADSA12_Presentations/24_Schmidt.pdf
- 2. https://slideplayer.com/slide/9985506/
- -^{3.} PCD model: Computes PCD outputs from incident x-
- 5. http://www.astra-toolbox.com

Photon counting toolkit (PcTK, pctk.jhu.edu)

- What are modeled?
- Photoelectric effect (PE): Total absorption, fluoro emission and re-absorption
- Electronic noise
- Charge sharing up to 3x3 pixels
- Crystal: CdTe
- Energy range: 5-200 keV
- Limitations? What are *not* included? \rightarrow Anything but above
- Compton/Rayleigh scattering, pulse pileup, etc.
- X-ray interaction with objects (attenuation, scatter, etc.)
- Charge cloud/pixel size < 1, K-ray travel distance/pixel < 1
- Others
- How to simulate a new scanner? \rightarrow It is outside PcTK. Need a wrapper?
- How to access the software? \rightarrow Download the application from <u>pctk.jhu.edu</u>, fill and send it to <u>ken.pctk@gmail.com</u>. We will review and provide a link to download the Matlab codes.
- Is there a cost to use it? \rightarrow No. But has to be an academic site.
- Are paid consultants available to help using the software? \rightarrow Yes. Myself.
- What's in it for you to develop and maintain the toolkit? \rightarrow Pulse pileup effect.

(a)

Photon Counting Toolkit (PcTK,

PHOTON COUNTING TOOLKIT

Photon Counting Toolkit (PcTK) What PcTK Can Do

PHOTON COUNTING TOOLKIT

РсТК

PHOTON COUNTING TOOLKIT (PCTK)

Welcome to the home of Photon Counting Toolkit (PcTK), a software tool to help your research on photon counting x-ray computed tomography (PCD-CT).

The PcTK is a Matlab program for a PCD model which takes into account spatio-energetic cross-talk and correlation between PCD pixels. We have developed PcTK in collaboration with

Spatio-energetic cross-talk in photon counting detectors: Numerical detectors model (PcTK) and workflow for CT image quality assessment Katsuyuki Taguchi^{a)} Division of Medicol Imaging Physics, The Rassell H Morgas University School of Medicine, Baltimore, MD 21287, USA t of Radiology and Radiological Science, Johns Hapi Karl Stierstorfer Computed Tomo graphy, Slemens Healthineers, Forchheim, German Christoph Polster Computed Tomo graphy, Stemens Healthin eers, Forchheim, Germ hestinate for Clinical Radiology, Ludwig-Maximilians-University -Horontal Munich, German unnyan Long Division of Medical Imaging Physics, The Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins Division of Medicine, Balamore, MD 21287, USA Steffen Kappler Computed Tomo graphy, Siemens Healthin eers, Forchheim, German eived 23 August 2017; revised 6 February 2018; accepted for publication 25 February 2018 ished 15 April 2018) Purpose: The interpixel cross-talk of energy-sensitive photon counting x-ray detectors (PCDs) has been studied and an analytical model (version 2.1) has been developed for double-counting between hboring pixols due to charge sharing and K-shell fluorescence x-ray emission followed b sorption (Taguchi K, et al., Medical Physics 2016;43(12):6386-6404). While the model ver and by its 2.1 simulated the spectral degradation well, it had the following problems that has been found to be ificant recently: (1) The spectrum is inaccurate with smaller pixel sizes; (2) the charge cloud must be smaller than the pixel size; (3) the model underestimates the spectrum/counts for 10-40 keV; and (4) the model version 2.1 cannot handle n-tuple-counting with n > 2 (i.e., triple and the standard st Standard s is: We propose a new PCD cross-talk model (version 3.2: PcTK for "photon counting toolkit") approach and starts with a 2-D model of charge sharing (as opposed to an analytical approach and starts with a 2-D model of charge sharing (as opposed to an analytical approach and a I-D model with version 2.1) and addresses all of the four problems. The model takes the following tors into account (1) shift-variant electron density of the charge cloud (Gaussian-distributed), (2) tection efficiency, (3) interactions between photons and PCDs via photoelectric effect, and (4)

electronic noise. Correlated noisy PCD data can be generated using either a multivariate normal ran dom number generator or a Poisson random number generator. The effect of the two parameters the effective charge cloud diameter (d_0) and pixel size (d_{ab}) , was studied and results were compared with Monte Carlo simulations and the previous model version 2.1. Finally, a script for the workflow for CT into a guality assessment has been developed, which started with a few material demity images inty accossing in the new precision, which shared with a few material up material-specific sinogram (line integrals) data, noisy PCD data with spect addel version 3.2, and reconstructed PCD-CT images for four energy windows

Results: The model version 3.2 addressed all of the four problems listed above. The spectra with $t_z = 56-113$ µm agreed with that of Medipix3 detector with $d_{plx} = 55-110$ µm without charge numing mode qualitatively. The counts for 10–40 keV were larger than the previous model (version 21) and aereed with MC simulations very well (root-mean-square difference values with model ver ere decreased to 16%-67% of the values with version 2.1). There were many non-zero off indigonal elements with n-uple-counting with n > 2 in the normalized covariance matrix of 3×3 meighboring pixels. Reconstructed images showed biases and artifacts attributed to the spectral distor In glinber of g balls. It exclusions arranges measures must an anxiety method on a space measure obscillation of the strength of the strength

TaguchiK_PcTK_MP2018.pdf

hys. 45 (5), May 2018 0094-240 5/201 8/45(5)/1965/14 @ 2018 Am

Medicine [https://doi.org/10.1002/mp.12863]

- "Spectral response" model of photon counting detectors
- Medical Physics 2018;45(5):1985–1998
- Matlab programs •
- Available for academic research, free of charge •
- Download the application and send to <u>ken.pctk@gmail.com</u>

Study spill-out spectra

Monte Carlo (MC) by Stierstorfer K, Med Phys, 2018;45(1):156-166.

Oct. 17, 2018. K. Taguchi (JHU). ASDA19

Study recorded spectra

Oct. 17, 2018. K. Taguchi (JHU). ASDA19

Simulate correlated noisy CT data

10

Simulate correlated noisy CT data

11

Photon counting toolkit (PcTK, pctk.jhu.edu)

- What are modeled?
- Photoelectric effect (PE): Total absorption, fluoro emission and re-absorption
- Electronic noise
- Charge sharing up to 3x3 pixels
- Crystal: CdTe
- Energy range: 5-200 keV
- Limitations? What are *not* included? \rightarrow Anything but above
- Compton/Rayleigh scattering, pulse pileup, etc.
- X-ray interaction with objects (attenuation, scatter, etc.)
- Charge cloud/pixel size < 1, K-ray travel distance/pixel < 1
- Others
- How to simulate a new scanner? \rightarrow It is outside PcTK. Need a wrapper?
- How to access the software? \rightarrow Download the application from <u>pctk.jhu.edu</u>, fill and send it to <u>ken.pctk@gmail.com</u>. We will review and provide a link to download the Matlab codes.
- Is there a cost to use it? \rightarrow No. But has to be an academic site.
- Are paid consultants available to help using the software? \rightarrow Yes. Myself.
- What's in it for you to develop and maintain the toolkit? \rightarrow Pulse pileup effect.

(a)

Backup slides

Oct. 17, 2018. K. Taguchi (JHU). ASDA19

Spatio-energetic cross-talk

14

Spectral distortion

Problems and study aims

[1] Tanguay J, Med Phys, 2015;42(1):491–509
[2] Xu J, Med Phys, 2014;41(10):101907
[3] Taguchi K, Med Phys, 2016;43(12):6386–6404 and SPIE MI 2016

Charge density: 3D Gaussian

Charge sharing by 3x3 pixels

for energy E_1 =1:150 keV energy density: $E_1 \rho_e$ for incident location *i* at pixel 5 E_j =integ $[E_1 \rho_e]$ for each pixel *j* add PMF(*i*) to covariance element $nCovE(k_j(E_j), k_{j'}(E_{j'}), E_1)$ next location *i* next energy E_1

nCovE 3D matrix for recorded energy Ej=0...190 keV, j=1...9 pix, for incident energy E1=0...150 keV

8 9

22

3

6

2

5

Various q's (0=no fluoro, 1=K-escape, 2=re-absorption)

Charge sharing with 2 charge clouds

secondary cloud i_k + + primary cloud i

Oct. 17, 2018. K. Taguchi (JHU). ASDA19

Charge sharing with 2 charge clouds

Correlated noisy PCD data generator

Results (1): Various input energies (E_1)

Results (3): Spill-out spectra vs MC sim.[1]

Default settings CdTe, 1.6 mm Pixel size (d_{pix}) : 225 μm Charge cloud size (d_0) : Ø48 μm (v3.2) Ø96 μm (v2.1) Electronic noise: 2.0 keV (v3.2) 2.5 keV (v2.1)

[1] Stierstorfer K, Med Phys, 2018;45(1):156–166.

Results (4): Mean/var/cov vs MC sim.[1]

[1] Stierstorfer K, Med Phys, 2018;45(1):156–166.