

DAISY

Towards In-baggage Suspicious Object Detection Using Commodity WiFi

Yingying (Jennifer) Chen

WINLAB

Department of Electrical and Computer Engineering Rutgers University New Brunswick, NJ 08854

Email: yingche@scarletmail.rutgers.edu

Web: http://www.winlab.rutgers.edu/~yychen/

October 17, 2018

Interviewed by CBS TV, BBC News, NBC New York, IEEE Engineering 360

So What? Who Cares?

- □ Space: detecting suspicious objects in baggage (e.g., lethal weapons, home-made bombs and explosive chemicals)
- □ **Problem:** manual examination and expensive inspection equipment (e.g., X-ray machine in airport) are hard to be widely deployed
- □ **Solution**: exploiting WiFi signals to provide a low-cost and easy-to-scale solution; capturing the signal interferences to detect suspicious objects and further identify the dangerous level of the object

☐ Results:

- Detecting suspicious object and identifying dangerous material type (e.g., metal and liquid)
- Examining the object's dimension (i.e., metal object shape or liquid volume)
- **□TRL**: 8
- ☐ Contact me
 - Email: yingche@scarletmail.rutgers.edu

Motivation

Boston Marathon Bombing 2013

Las Vegas Shooting 2017

Need expensive CT and X-ray machines everywhere

We provide a low-cost solution leveraging the commodity WiFi device to detect suspicious hidden objects

Attack Model

- ☐ An adversary intentionally or unintentionally carries dangerous items
 - Lethal weapons, home-made bombs and explosive chemicals
- ☐ In-baggage suspicious objects
 - Metal: guns, knives, laptops and batteries
 - Liquid: water, acid, alcohol and other chemicals
- Vulnerable areas
 - Schools, museums, stadiums, theme parks, Metro/train stations and scenic locations
 - ❖ No pre-installed security check infrastructures
 - High-manpower for security checks

Homemade bombs

Solution Overview

- ☐ Using a pair of commodity WiFi devices and deep learning-based signal selection
- ☐ Examining fine-grained Channel State Information (CSI) from WiFi signals
 - ❖ Amplitude and phase information of 30 subcarriers
- ☐ Capturing various interferences by the objects based on CSI
 - Absorption, refraction and reflection

Identifying the object material based on signal absorption and refraction

Estimating the object shape based on signal reflection

Machine learning-based classifier

Neural networkbased method

Machine Learning Based Material Classification Leveraging CSI

- ☐ Signal absorption and refraction are captured based on CSI
- ☐ Learning-based classifiers (e.g., SVM) are used
- ☐ Detecting suspicious object with 95% successful rate
- ☐ Identifying the material (e.g., metal or liquid) with 90% accuracy

Step1: Differentiate dangerous and non-dangerous objects based on CSI complex values

Step2: Identify dangerous material (e.g., metal and liquid) based on CSI differences between antennas

Object Risk Estimation: Liquid Volume Estimation

- Signal reflection by objects is extracted from CSI
- □ Neural network-based method or linear regression model are developed to estimate the liquid volume

Deriving the relationship between CSI amplitude and liquid height per subcarrier

Object Risk Estimation: Metal Object Imaging

Signal reflection by the object is extracted from CSI for shape estimation

Average errors to estimate metal objects' width and height: 0.3cm and 0.5cm

What is Next?

- □Limitations of current solution and how to mitigate?
 - Evaluating the system model with real dangerous objects (e.g., weapons)

Pistol Display model https://bit.ly/2pTqSoW

- Extensive system performance testing in public places (e.g., schools and train stations)
- Developing hand-held WiFi devices (e.g., smartphone) or robotbased miniPC to support fully portable dangerous object detection
- ☐ How to address an adapting adversary?
 - Dynamically updating the system model with more and new dangerous objects

Backup: Related Work

- ☐ Traditional in-baggage suspicious object detection
 - Manual examination at checkpoints
 - Expensive dedicated equipment
 - ➤ CT volumetric imagery
 - >X-ray machine
- □Recent RF signal-based method
 - Specialized signal
 - ≻60 GHz radar, RFID, USRP
 - ❖Large antenna arrays
 - ❖ Hard to differentiate both material and shape

Backup: System Flow

Backup: Experimental Methodology

- Experimental Setup
 - Two Dell Latitude E6430 laptops
 - Ubuntu 10.04 LTS with the kernel 2.6.36
 - IWL 5300 wireless cards
 - Four 6dBi omnidirectional dual band rubber ducky antennas
 - Frequency band: 5GHz
 - Packet rate: 100pkt/sec
 - Typical indoor room with two people
- **Setup1:** Tx and Rx are placed apart for material classification
- **Setup2:** Tx and Rx are placed closely for imaging the object

Backup: Experimental Methodology

□15 target objects

□ 6 representative bags/boxes

Backup: Performance of Material Classification

99% accuracy to classify dangerous and non-dangerous 97% accuracy to differentiate metal and liquid

Detection rate for the dangerous material, metal and liquid are 99%, 98% and 95%.

Backup: Risk Level Estimation based on Object Imaging

Metal objects' width and height estimation average errors 0.3cm and 0.5cm

Liquid volume estimation with median error 16ml

