

PRESENTED BY

Srivathsan P. Koundinyan, April Suknot, Kyle R. Thompson, and Edward S. Jimenez

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

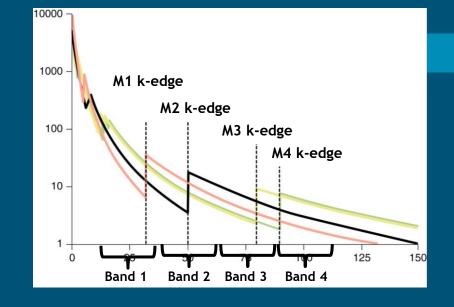
So What? Who Cares?

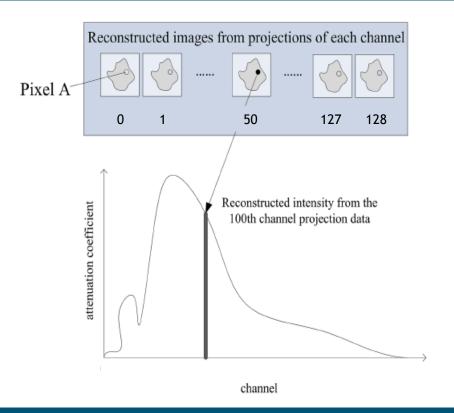
- **Space:** enhanced material evaluation capability in industrial, security, and other general non-destructive testing applications
 - Motivation: materials differ in appearance and contrast based on incident photon energy
 - Dual energy CT leverages this to provide more information about an object

Problems:

- Requires two separate acquisitions
- The selected energy ranges may not provide sufficient contrast
- Materials may be indistinguishable
- Solution: Hyperspectral Computed Tomography
 - >100 images simultaneously acquired corresponding to unique energy bins between 0 and 300 KeV

Results:

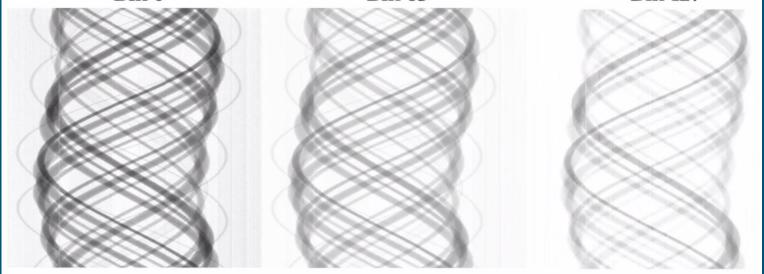

- Distinguishes different types of explosive simulants
- Spectral information can be integrated into machine learning pipeline for above 90% accuracy in separating similar materials

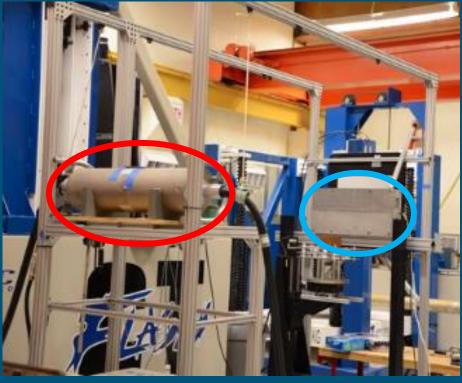

• <u>TRL:</u> 4

- Technology has demonstrated competence in a wide variety of NDT applications
- · Limitations: long acquisition times, slow production pipeline, bulky, and limited FOV

Contact information:

- Name: Srivathsan Koundinyan
- Affiliation: Sandia National Laboratories, Albuquerque, New Mexico
- Email: skoundi@sandia.gov

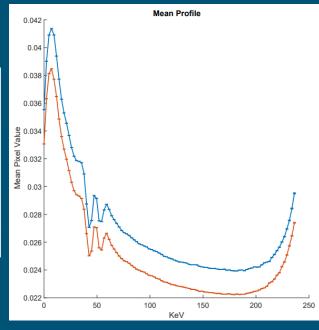




Solution

- MultiX Detector:
 - Energy-resolved X-ray detector
 - 128 channels
 - 300 keV maximum energy detection
- •FOV: images objects up to half meter wide and 9 meters tall
- •System has been acquiring data as of May 2017
- •Initial test:
 - Image phantom in circular orientation with polychromatic source between 0 and 250 keV

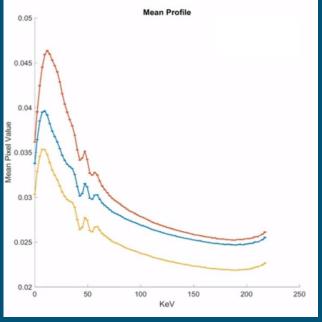
Bin 0 Bin 63 Bin 127


- Scatter/pulse pile-up
 - •Charge sharing
- Other sources of non-linearities

4 Results

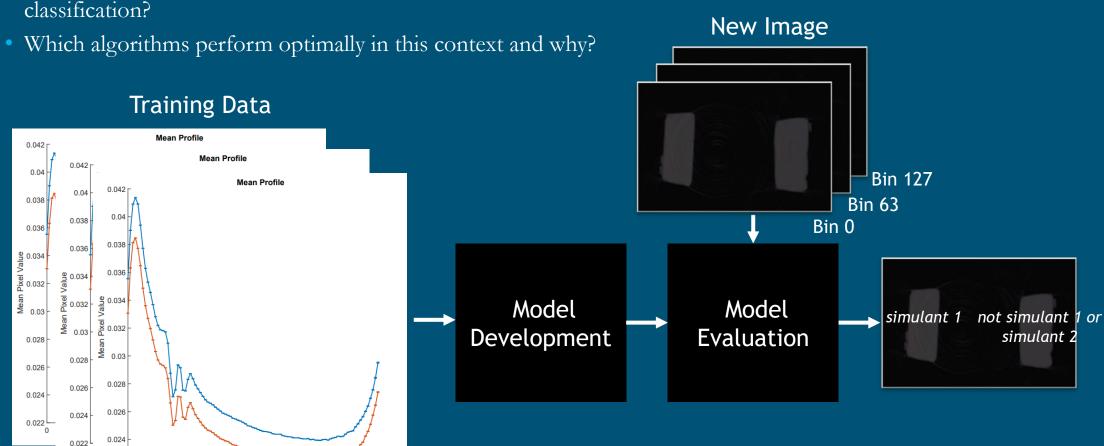
- Two 1 pound block of explosive simulant
 - Very similar composition

116 keV energy bin



- Three 1-inch diameter cylinders of explosive simulants
 - Very similar composition

Materials with similar composition can be quantitatively separated using energy-dependent attenuation waveforms from spectral CT system¹


^{1.} Jimenez, Edward S., et al. "Leveraging multi-channel x-ray detector technology to improve quality metrics for industrial and security applications." Radiation Detectors in Medicine, Industry, and National Security XVIII. Vol. 10393. International Society for Optics and Photonics, 2017.

Results

0.022

•The utility of machine and deep learning techniques for understanding quantitative spectral CT information has been investigated

• Given training/reference data for various materials, can algorithms be developed for automated material classification?

Results

- •All ML algorithms trained with pixel-by-pixel spectral attenuation waveforms for different materials
 - Training dataset comprised of only two example scans
- •17 cylindrical samples in circular orientation
 - 128 images reconstructed for energy bins uniformly spaced up to 250 keV
 - Variety of materials: empty polyethylene bottle, Nylatron, Delrin, SAE 30 motor oil, acrylic, nylon, two samples of water (one ionized, one tap), teflon, polyethylene, soft-drink Pepsi, lexan, diet soft-drink Coke, aluminum, magnesium, salt, and phenolic
 - Can separate each of these materials with above 90% accuracy
- 6 cylindrical ceramic samples in circular orientation: zirconia, alumnia, alumina-bisque, aluminum silicate, high temperature glassmica, and glass-mica
 - Can separate all materials with above 90% accuracy

7 TRL

- TRL: 4
 - Advantages:
 - Distinguishes similar and dissimilar objects with very high accuracy and in an automated fashion
 - Limitations:
 - (1) Can currently only image small objects half meter wide and 9 meters tall
 - (2) Bulky
 - (3) Relatively long acquisition times
 - (4) Warrants a direct comparison with dual energy CT

- Name: Srivathsan Koundinyan
- Affiliation: Sandia National Laboratories, Albuquerque, New Mexico
- •Email: skoundi@sandia.gov

Thank you!