TSA Passenger Screening Algorithm Challenge ADSA 19: Rapid Response to an Adapting Adversary October 17, 2018 Phillip Adkins and Halla Yang

Background

Phillip Adkins Chicago, IL

- B.S. **Physics** (University of Southern California)
- 6+ years data science at Citadel, Banjo, Gamut, ...
- Prior Kaggle prize wins:
 - 2nd Place, Epilepsy Seizure Prediction Challenge

Halla Yang Chicago, IL

- B.A. **Physics** (Harvard)
- Ph. D. in Business Economics (Harvard)
- 10+ years at Citadel, McKinsey, Goldman Sachs, ...
- Prior Kaggle prize wins:
 - 1st Place, Pfizer Prescription Volume Prediction
 - 2nd Place, Recruit Coupon Purchase Prediction

McKinsey&Company

Motivation

- Opportunity to help improve airport security.
- Remembrance of 9/11.

- Family tradition: parents both conducted research at ORNL, other labs.
- Both worked on security related research at some point in their careers.

- Had previously obtained 4 of 5 "gold medals" required on Kaggle to become 'grandmaster,' an achievement rank attained by only 100 competitors to date.
- This competition was the 5th gold medal.

Approach

Step 1. Image Processing

Step 2. Feature Extraction

- Random forest classifier applied to find hands, heads, legs, etc.
- Threats are usually only visible in certain angles, so need crops from multiple viewpoints.
- This step reduces dimensionality of the original problem and makes further training more likely to succeed.

- Each crop is fed through a traditional conv/pooling architecture.
 - Dimensionality is reduced at each step.
- Features extracted from final pooling layer fed through dense layers.
 - Dropout is used to avoid over-fitting when training.
- One-hot encoding of zone ID is merged into dense layers.

- Predictions from separately trained models are averaged together.
- Final score: 6th place with log loss 0.055 (\$100K prize).
- Solution likely to generalize out of sample.
 - Did not rely on contest-specific assumptions.

Step 1: Image Processing

- We **trained a random forest classifier** to automatically identify body segments, e.g. upper right arm, lower left hip, that correspond to TSA-identified zones of interest.
- The classifier used **symmetry** and searched for **centers of mass**, producing the likely horizontal and vertical coordinates of the midpoint of each zone (e.g. lower left arm in this example) in all angles.
- Because the crops were likely to be imperfect, we applied translations, stretches, and other perturbations when training our networks to increase robustness.

Steps 2 - 3: Feature Extraction and Prediction

- Convolutional neural network is trained from scratch no use of pre-trained models.
- Weights of networks applied to the different views are tied together, since the identification of threats should be invariant to angle.
- **Training** time ranged from 24 hours for the 3-input network to 48 hours for the 7-input network on Amazon Web Services GPU instances.
- Predictions of 3-view, 6-view and 7-view angles blended together.
- Prediction on new images is fast, implementable in real time with minimal latency.

Path to Production

Improve

- Can use model as is: our approach does not rely on competition-specific assumptions, and so it is likely to generalize out of sample and perform well in realistic situations with no further changes.
- [OPTIONAL] Fine tune the model with an augmented test set containing additional threats and body types, further improving accuracy.

Assess

- Partner with TSA, manufacturers to incorporate into software and test.
- Deploy algorithm in equipment and conduct pilot trials at select airports.
- Collect feedback from operators.

Deploy

- Identify key learnings and modify / improve as necessary.
- Train personnel and roll out nationwide.
- Develop processes to continuously iterate and improve software.

