DHS/Kaggle Passenger Screening Algorithm Challenge

1st Place Solution

Jeremy Walthers

DataLab USA

jwalthers@datalabusa.com

Overview

Method

Multi-View Convolutional Neural Network

Results

• 1st Place, 0.02417 logloss on test data, (for those not familiar with logloss this is roughly like 97.6% correct)

Motivation to Participate

Learning, Experimentation, (prize pool impacted effort level)

Benefits Derived

• More familiarity with recent computer vision research, Practical experience implementing complex and distributed models in Tensorflow, (and \$500,000)

Future

 Would be interested in working on similar problems in the future (jwalthers@datalabusa.com)

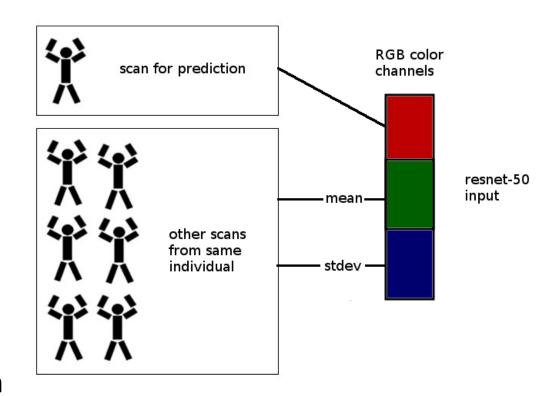
Technical Description

- Contest data provided in four formats
- Present solution used only APS format
 - APS = "projected image angle sequence"
 - Imagine walking in a circle around the subject and taking 16 photos
- APS was the smallest format at ~10MB per scan
 - Largest format, AHI, was over 2GB per scan
- Algorithm splits scans into four overlapping regions depicted in the figure to the right
 - Separate model built for each region
 - Allowed higher resolution models

Each scan split into four regions separate model built for each region

Technical Description

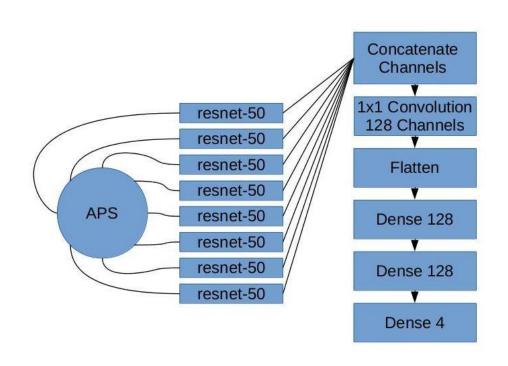
- Scans are monochrome
- Standard computer vision models take three-channel RGB input
- Contest data consisted of multiple scans of the same subjects
 - Rules permitted use of multiple scans in prediction
- Other scans for an individual identified via unsupervised learning
 - Mean and standard deviation are taken at the pixel level



Generating three-channel input from reflectivity

Technical Description

- Eight of Sixteen APS images fed into ResNet-50 and output reduced to four or five threat predictions on each region
 - Only half of the APS images used due to hardware constraints
 - ResNet-50 pre-trained on the ImageNet-1k dataset
 - Weights shared between each copy of ResNet-50
- Predictions pass through a calibration step before submission
 - Accomplished by what is typically called stacking
 - In this case: a gradient boosted decision tree model was fit on out-of-sample predictions of the model depicted to the right



Model architecture

Results

#	∆pub	Team Name	Kernel	Team Members	Score @	Entries	Last
1	▲ 134	idle_speculation		7	0.02417	2	10mo
2	▲71	serg14			0.02659	2	10mo
3	^ 69	David O. Thomas A.			0.03042	4	10mo
4	^1	teedrz			0.04211	3	10mo
5	4 0	Oleg Trott			0.04236	2	10mo
6	▲ 116	CNN is fake model			0.05501	2	10mo
7	▲ 64	suchir			0.05838	2	10mo
8	4 1	kaggle446			0.05970	10	10mo
9	▲ 108	Trox&Troy		9	0.06036	2	10mo
10	▲ 104	Moejoe			0.06132	2	10mo
11	4 92	dhammack			0.06438	4	10mo
12	▲ 125	Joseph Chui			0.06783	2	1 0mo

Strengths and Weaknesses

Weakness

- Slow (~2 minutes per scan)
 Can reduce to a couple seconds on GPU with very minor performance hit
- Method relied on multiple scans of the subject Small (0.00-0.01) increase in logloss for single scan approach
- Variance in subject height caused prediction issues
 Easy to fix

Strengths

- Low error rate
- No errors when region is visible in stage 1 validation data
 Excellent generalization
 - Final standing mirrors cross-validated results
- Straightforward architecture

Future

Suggestions for future competitions

More Data

Not in the sense of raw size, but in number of distinct training instances

More Interaction

Take part in forum conversations

• Use Kaggle again

"Do it yourself" competitions frequently end unsuccessfully and unhappily

Further work

- Would compete in another DHS algorithm competition
- Interested to hear about other opportunities for similar work

Thank You

Jeremy Walthers

DataLab USA
jwalthers@datalabusa.com