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So What, Who Cares?

* Desire to adapt EDS system performance to changes in threat requirements
* New threats, new Regions of Responsibility for existing threats, new performance requirements
* Would like this adaptation to happen rapidly (order of days, not months).

* ALERT conducted a task order experiment in Adaptive Automated Target
Recognition, sponsored by Drs. Laura Parker and John Fortune, DHS

* Five performers: Boston University, Livermore Laboratory, University of Durham (UK), and two
teams from Purdue University

* Each team developed different approaches for ATR and adaptation to changes in performance
requirements

* Approaches were evaluated using both training and sequestered unclassified data from
medical scanner
* Approaches had varying degrees of success
* |dentified issues in adaptation, validation, potential certification of approaches
* Lessons could be valuable for evolving existing EDS systems to increase adaptability
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The Data

3-D volumetric images of containers, obtained
by IMATRON Scanner: single spectrum

Objects of interest in training data
* Rubber sheets of different thickness, widths
* Bulk saline bags, different sizes
* Bulk clay, different sizes

Training data is available, distributed by ALERT
to promote further research

» Sequestered data for evaluation not distributed

Additional objects of interest
* Several compounds of different sizes, designed by
Livermore Laboratory
* Included only in sequestered data




Adaptive ATR Tasks

* Requirements: adapt EDS ATR system to changes in:
* Desired Py, Pg,
* Definition of threats: mass, density, thickness, type, ...
* Differential Py, Py, per threat class

* New threats from specifications without training data

» Text specifications provided to AATR
* AATR required to modify ATR to meet specifications

* Able to use training data to cross-validate predicted
performance

* Limited significantly in predicting performance for objects
with no training data
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ATR Approaches

* Typical of ATR processes, includes segmentation,
feature extraction, and classification

* Each team developed independent approaches to
these functions

» Different segmentation, features, classifiers

* Classification approaches:

* One vs. all SVM yielding probability of type, used for
classification

e Gaussian sum voxel classification followed by
consensus smoothing of likelihoods, then segmentation
and eventual classification

* K-nearest neighbor classifiers
 Random Forests
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Evaluation Metrics

e Output of ATR: Volumetric image with location of detected threat volumes in bag

* Ground truth used in scoring: Volumetric image of true threat volumes in bag, hand
developed using videos of packing container plus manual recognition

* Fundamental metrics:
* Detection: Significant overlap between detected threat volume and ground truth threat volume
* False alarm: Reported threat volume that does not have corresponding ground truth threat volume
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Adaptation to Requirements for Known Threats

* Problem: Changing Prob. Detection/False alarm
tradeoffs for threats in training data

* Increase importance of some threats, decrease others

* Change region of responsibility (minimum mass,
thickness, density spread, ...)

* Approaches:

* Change thresholds for decisions, keeping similar

processing of features, structures (Durham, Purdue 1,
LLNL)

* Reweight training data, retrain classifiers while cross-
validating performance
(Purdue 2, BU)
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Adaptation to Requirements for Unknown Threats

* Unknown threats: Not present in training data

* Only information is on simple RoR parameters:
* Density range, Mass range, Thickness range

* Very different approaches investigated:

* Randomly generate new training data using RoR guidance - integrate with existing
training data (Durham, Purdue 2)

* Randomly generate parameters of classifiers (e.g. Gaussian sum parameters, Feature
samples for k-nearest neighbors) = generate single merged classifier (Purdue 1, LLNL)

* Design separate classifier using reduced feature set, integrate into overall structure
using parallel paths (BU)

* Key issue: don’t have data to cross-validate performance!
* Can assess P, because of available background training data, but not P,

* Addressed in this effort by tuning using multiple attempts, but not practical in real
scenarios with unknown threats



Performance of Approaches for Unknown Threats

* Evaluated with only threat the unknown threats

* Some approaches based on simulating data
were very sensitive to assumptions not .
provided in requirements == R
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* Performance of separate classifier (team 5)
with reduced feature set as good or better than
alternatives.

Durham Purdue 1 LLNL Purdue 2 BU
Density Range Minimum Req. Req. Team 1 Team 2 Team 3 Team 4 Team 5
00l (MHU) Mass(g) PD(%) PFA(%) PD PFA PD PFA PD PFA PD PFA PD PFA
Al 380-525 42 90 10 76 12 83 14 94 11 26 13 89 1

A2 770-810 67 90 10 100 46 100 13 85 = 71 47 100 5
A3 1300-1375 174 90 10 92 15 100 12 96 2 28 38 92 11
Al 1350-1430 183 90 10 100 11 100 6 80 1 25 70 100 0




Ongoing near-term work

* Testing on new materials with requirements for mixture of
known/unknown threats

 Evaluating utility of providing additional information on known threats
* Small examples from sequestered data
* Additional description of RoR

* Report documenting effort available (any time now) from ALERT on
request
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So what was learned?

* Can extend ATR algorithms to modify performance requirements
* Does require access to training data to tune/evaluate adaptation

 Key issue: How to validate/verify detection performance against new
threats with limited specifications
* Cannot do iterated performance testing with sequestered data

* Consider use of simulated data embedded in stream of commerce to generate cross-
validation

 Can also consider generation of simulated image data for training = not explored in
current effort that used only reconstructed images.

* Use of separate classifier for new threats provides easy path for expansion
of existing EDS systems
* Certified EDS component not modified
* Can provide interim capability while additional threat characterization is obtained



Questions from Carl

* What were the comments from TSA and the vendors at the program
review?
* Wished performers used common early processing to show differences in AATR

* Thought approaches were reasonable, similar to how rapid response would be
implemented in own EDS systems

 What will it take to deploy an AATR?

* Trust: demonstration that performance can be achieved when changing software
parameters to respond to new requirements

* What changes will TSA have to make to deploy an AATR?
* Develop approach to verify/certify adaptive algorithms
 Similar to certifying feedback control systems, etc — much recent work in area

* How does ALERT’s AATR compare to other methods for dealing with an
adaptive adversary?
* Focus on rapid exploitation of intelligence data to close vulnerability.
* Don’t know too much about other methods...



