Summary and Next Steps

ALERT ADSA 19, Northeastern University
October 16-17, 2018

Carl Crawford (Csuptwo), Suriyun Whitehead (Booz Allen Hamilton, Larry McMichael (LLNL)

This research was funded by the Science & Technology Directorate of the Department of Homeland Security

LLNL-PRES-760759

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC
Summary and Next Steps

Carl Crawford, Suriyun Whitehead and Larry McMichael
ADSA 19 October 16-17, 2018
Was ADSA19 Successful?

• It depends on the metrics you choose, examples include
 – Audience learning about where TSA is headed
 – TSA learning about new technologies/capabilities
 – Number of
 • Attendees
 • Forming partnerships
 • Developed products
 • People working together
 • Enabled DHS sponsorship
 – Increase of stakeholders’ participation
 – Spin off of other ADSAs
 – Number of side bar conversations
What Did We Hear?

• Overview:
 – ADSA will continue, program may evolve
 – Expectation of outreach, programmatic impact through interactions between the whole community
 • COE success stories depend upon technology transfer to fielded capability (e.g., CMU voice recognition tool barrier to widespread use within Coast Guard)
 – Transition of technology versus product capability
 – Avoid need to shutdown airports when a new threat emerges
 – Is TSA creating the impression for the public and Congress that their equipment is perfect versus effective?
 – Rapid response capability requires preparation and commitment – a new ecosystem required
What Did We Hear?

• DHS/TSA Perspectives
 – Research investments should have a transition plan for deployment at the onset
 – Threats adapt versus go away
 – Better security, faster – does it mean better detection, faster operations, networked equipment, all of it – you can only go fast when grabbing low hanging fruit
 • Can’t wait for perfect system to deploy, must adapt in the field
 • Leveraging TSA’s existing authorities to respond quicker (e.g., Innovation Taskforce, Automated Screening Lanes, accept donated technology)
 • AIT without divestment – Enhanced technology deployed for Pre Check program
 – Checkpoint CT deployment
 • Limited deployment show encouraging results, throughput remains a challenge
 – Is TSA overly optimistic for Checkpoint CT? Overly focused on CT due to political pressure?
What Did We Hear?

• DHS/TSA Perspectives
 – Adversaries are becoming more strategic, testing boundaries
 – Use of ML for prohibited items to reduce cognitive load on TSOs
 • Potential first application of “algorithm certification”
 • How to avoid “garbage in, gospel out” – how much data is adequate to enable accurate generalization of ML algorithms
 – Do all prohibited items pose the same level of risk? Subset to be incorporated into the PI detection standard.
 – Future Lane Experience (FLEx) based on risk mitigation where least information is available, Passenger Risk Differentiation, adjustable algorithms – initially by lanes, future by dynamic equipment
What did we hear?

- DHS/TSA Perspectives
 - Air cargo is going to 100% screening
 - Integration of air cargo screening with existing technology, pushing capability to offsite, non-federally staffed facilities; 500K ceiling.
 - Exploring application of x-rays, nuclear quadrupole resonance, fused imaging for air cargo
 - Any loss of life is a terrorist attack? How do you quantify the minimum threat that you protect against – individual, small group, a full aircraft?
 - At what point is an image too complicated for a person to decipher versus send directly to secondary inspection – developing OCAS, OCAST
What did we hear?

• DOD Perspective
 – Are we looking at a problem the same way every time and missing what the opportunities are
 – When requirements are set, that is what will be built – do they incorporate your future needs?
 – Collaboration with end user to develop a better product
 – Soft target protection: layered, covert at perimeter, overt at chokepoint
 – Advocation of communication with public – make the wait worth it

• Advanced Technology – Transitioning Technology
 – Need for balance between long-term development versus short-term impact when evaluating transition
What did we hear?

• Advanced Technology – Use of simulation
 – Drive concurrent hardware design to minimize time to market (eliminate nonviable configurations)
 – Application of rapid design and prototyping algorithms to develop hardware and achieve better performance and cost optimization
 • Toolkit available for simulating photon counting detectors, working on pulse pileup effect

• Advanced Technology – Emerging capabilities
 – Video analytics
 – Standoff trace chemical detection as a collaboration between academia and industry
 – Prototype deployment of mass spectrometry system
 – Commodity WiFi hardware
 – Are different metrics needed to evaluate algorithms – volume basis vs overlap (segmentation)
 – Hyperspectral CT as an alternative to dual-energy CT
 – Biometrics coupled with ML (e.g., facial recognition)
 – Distributed sensors for monitoring airport environment (early detection)
What did we hear?

• Advanced Technology – Application of ML/DL
 – How will it perform outside of visual identification tasks?
 • E.g., promise with metal artifact reduction in reconstructed images
 – Use of synthesized data to address imbalanced data sets for low probability events and impact on data availability, generalization on ML algorithms
 – Synthesized data set generation complicated by nonlinearities in x-ray physics
 – Use synthetic data to evaluate how well ML/DL generalize by introducing feature variations

• Advanced Technology – Use of open architectures
 – Driven by government requirements
 – Proprietary formats lead to a fragmented solution space which impedes sharing information between systems/equipment
 – DICOS v2A: multi-energy, multi-view, hope for beta version in early 2019, maintenance contract for toolkit in place
 – Integrated airport information system via OTAP
 – Means of deploying innovations from crowd-sourcing
What did we hear?

• Perspectives: Airports and Humans (cont)
 – How to recognize and deter terrorists (other violent actors) – what to look for
 • Terrorists more likely to surveille targets than mass shooters
 • How can we monitor and detect risk factors? Legal limitations? Return of Behavioral Detection Officers?
 • No predictive models, only indicators for people that are susceptible to recruitment
 • Radicalization is a process
 – Need to redefine what the checkpoint looks like, from a customer, airport, and security perspective – invisible processes that extend screening beyond a set checkpoint
 – Human factors affect engagement versus complacency; need to balance the cognitive load on TSOs as we introduce new technologies and automation (aptitude alignment)
 – TSOs should provide feedback to passengers on why their baggage triggers a false alarm and how to avoid it, so long as it doesn’t reveal system capability – what guidance do TSOs get or need to provide appropriate feedback?
What did we hear?

• Threat Characterization
 – Learning from the past to identify patterns for terrorist activity – similar methodologies across centuries, means evolved
 – Tendency to use materials that are readily available
 – Why aren’t suicide bombers (more) active domestically? – mass shootings are easier, other means allow the terrorist to see the effects, control
 – LENGTHY process for addressing an emerging threat
 – What are the practical differences between simulants and material of interest for a particular modality? Is it good enough for a simulant to match the x-ray physics and to what extent is that necessary?

• Adaptive technology: Incorporation of meta data to adjust system parameters for local conditions that could affect performance
What did we hear?

• Kaggle Competition
 – Complementary approach to traditional R&D investments to create outreach to non-traditional performers (attract new sources of talent to the problem domain)
 – Augmented images will often lead to training on the mutation – simple overlay doesn’t work, have to account for the inherent nonlinearities (physics matter)
 – Winner exploited data groupings (artifacts) intentionally, but others who avoided grouping data did well too
 – Implications on data collection to generalize algorithms to production environment
What we did not hear?

• Are we adapting fast enough? Lots of discussion on what current processes are, but little on how we can adapt those processes to make them faster
• How do we avoid reliance on luck for having new equipment or protocols on hand?
• Is displacement TSA’s problem?
 – Should that be someone else’s problem?
 – Have airline passengers bought into the risk?
• What happens to risk based screening when someone goes through the Pre Check lane and brings down an aircraft?
• Additional outreach is great, but what happens when all the low hanging fruit from other fields has been plucked?
• The level of discussion has waned compared to early workshops – how do we recover it as the workshop grows?
• What are the airlines role in security? Have they been too removed from the process? (push from LaGuardia, Atlanta to be more integrated... speed vs security)
• How do you certify equipment & algorithms for different levels of differentiation? Sliding ROC curves? Multiplicative factor for hardware and software changes.
• How does testing adapt when a host of third party algorithms are submitted?
• What is the incentive framework for third parties to participate?
ADSA20 – May 7-8, 2019

• The design, development, testing, deployment, and operation of effective systems
 – Defining effective
 – Human in the loop – use of simulants
 – Statistical significance of tests and influence of limited training data
 – Positive predictive value improvement
 – Detection vs deterrence vs displacement
 – Reducing time to market
 – Role of interconnectivity with open architectures
 – Is 30/1 (PD/PFA) better than (80/30)?
 – How to specify effective systems
 – Application of metadata
 – Rapid response to an adapting adversary
 – How do we drop a threat to the list
 – Dealing with imperfect equipment
 – Transition – particularly from academia
 – Effectiveness for other stakeholders: airlines and passengers, but also subway, rail, and cargo
 – True vs auto-detect – current supposition that we need imaging to detect
 – Data augmentation
 – Role of third parties