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CT Image Processing 



So What? Who Cares? 
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 Space: (Security) CT Image processing 

 

 Problem:  

 CT Recon: Sparse-view CT for fast acquisition 

 CT Segmentation: Automatic Target Recognition 

 CT Metal Artifact Reduction: Electronics in Carry-on Baggage 

 CT Synthesis: Expensive Data Collection (with explosives) 

 

 Solution: Deep Learning 

 

 Results:  

 High-quality Sparse-view CT Recon.  

 Accurate automatic segmentation and detection 

 Improved CT Image Quality  

 Augmented Training/Validation Data 



Sparse-view CT Reconstruction 
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 Filtered Back Projection (FBP): Linear / Analytical 

 Model Based Iterative Recon. (MBIR): Regularized / Iterative 
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FAST SLOW 



Deep Learning for CT Denoising 

 Deep Neural Networks 

 Powerful performance for vision tasks such as de-noising 

 Weights of a neural network learned on large training dataset 

 

 Image-domain processing as CT De-noising 
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PSNR: 18.7341 dB PSNR: 19.6841 dB 

FBP Deep Learning  

De-noising 

Ground-Truth 

MBIR 

Ye et. al., ICCASP 2018, GE Healthcare 



Deep Learning for CT Reconstruction 

 Convolutional Neural Network 

 Visual cortex: Neurons respond to stimuli only in the receptive field 

 Apply convolution to impose spatial invariance 

 Reduce the number of parameters 

 

 CNN for CT reconstruction from sinogram 

 Challenge: Sinogram is encoded in a spatially non-local way 
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Single-view Back-Projections 
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16-view 

sinogram 

Single-view Back-Projections for  

16-view sinogram 

 Back-project each view separately 



Deep Back Projection (DBP) 

 Network architecture 

 22-layer convolutional neural network 

 3x3 kernel 

 Batch Normalization + ReLU 
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Qualitative Evaluation 
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FBP DBP Ground-Truth 

Testing Scan 

#1 

Testing Scan 
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Ye et. al., GlobalSIP 2018 



Quantitative Evaluation 
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 Results on 20 testing sparse-view CT recon. 

 

 

 

 

 

 

 

 

 

PSNR (dB) SSIM 

FBP 18.43 ±  

3.75 

0.49 ±  

0.11 

DBP 19.84 ±  

2.44 

0.73 ±  

0.08 

DBP significantly outperforms FBP! 



Dictionary/Deep Learning for CT MAR 
Raw Image Standard MAR Dictionary Learning MAR 
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*display window [800, 1400] HU 

Jin & Ye et. al., ICIP 2015 Best Paper Runner-Up 



Deep Learning for CT Segmentation 
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 Automatic Target Recognition 

 U-Net 

 

 

 

 

 

 

 

 

 

ALERT Task Order 4 & 7 



Deep Learning for CT Synthesis 
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 Pediatric CT Synthesis 

 Generative Adversarial Network (GAN) 

 

 

 

 

 

 

 

 

 

Real CT Image Synthetic CT Image by GAN 

Kan & Ye, EMBC 2019 



Conclusion 

 CT Image Processing 

 16-view CT recon. 

 CT Metal Artifact Reduction 

 Automatic CT segmentation 

 CT synthesis using GAN 

 

 Deep learning can be beneficial for various CT image processing 

tasks in security application. 

 

 Contact donghye.ye@marquette.edu 

for Collaboration, Third-party Development, TSA/DHS Funding 

Opportunity 
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