

# Deep Learning for CT Image Processing

**Dong Hye Ye** 

Marquette University

May 16, 2019

### So What? Who Cares?

- Space: (Security) CT Image processing
- Problem:
  - CT Recon: Sparse-view CT for fast acquisition
  - CT Segmentation: Automatic Target Recognition
  - CT Metal Artifact Reduction: Electronics in Carry-on Baggage
  - CT Synthesis: Expensive Data Collection (with explosives)
- Solution: Deep Learning
- Results:
  - High-quality Sparse-view CT Recon.
  - Accurate automatic segmentation and detection
  - Improved CT Image Quality
  - Augmented Training/Validation Data

### Sparse-view CT Reconstruction

- Filtered Back Projection (FBP): Linear / Analytical
- Model Based Iterative Recon. (MBIR): Regularized / Iterative



# Deep Learning for CT Denoising

- Deep Neural Networks
  - Powerful performance for vision tasks such as de-noising
  - Weights of a neural network learned on large training dataset
- Image-domain processing as CT De-noising



PSNR: 19.6841 dB

#### Ye et. al., ICCASP 2018, GE Healthcare

# Deep Learning for CT Reconstruction

- Convolutional Neural Network
  - Visual cortex: Neurons respond to stimuli only in the receptive field
  - Apply convolution to impose spatial invariance
  - Reduce the number of parameters
- CNN for CT reconstruction from sinogram
  - Challenge: Sinogram is encoded in a spatially non-local way



# Single-view Back-Projections

• Back-project each view separately



16-view sinogram

### Deep Back Projection (DBP)

- Network architecture
  - 22-layer convolutional neural network
  - 3x3 kernel
  - Batch Normalization + ReLU



### **Qualitative Evaluation**



#### Ye et. al., GlobalSIP 2018

### **Quantitative Evaluation**

• Results on 20 testing sparse-view CT recon.

|     | PSNR (dB)       | SSIM           |
|-----|-----------------|----------------|
| FBP | 18.43 ±<br>3.75 | 0.49 ±<br>0.11 |
| DBP | 19.84 ±<br>2.44 | 0.73 ±<br>0.08 |

**DBP significantly outperforms FBP!** 

### Dictionary/Deep Learning for CT MAR

**Raw Image** 

**Standard MAR** 

**Dictionary Learning MAR** 



#### Jin & Ye et. al., ICIP 2015 Best Paper Runner-Up

\*display window [800, 1400] HU

# Deep Learning for CT Segmentation

• Automatic Target Recognition

• U-Net



#### ALERT Task Order 4 & 7

# Deep Learning for CT Synthesis

- Pediatric CT Synthesis
  - Generative Adversarial Network (GAN)



**Real CT Image** 



Synthetic CT Image by GAN

#### Kan & Ye, EMBC 2019

### Conclusion

- CT Image Processing
  - 16-view CT recon.
  - CT Metal Artifact Reduction
  - Automatic CT segmentation
  - CT synthesis using GAN
- Deep learning can be beneficial for various CT image processing tasks in security application.
- Contact <u>donghye.ye@marquette.edu</u> for Collaboration, Third-party Development, TSA/DHS Funding Opportunity