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• Desire to adapt EDS system performance to changes in threat requirements 
• New threats, new Regions of Responsibility for existing threats, new performance requirements  

• Would like this adaptation to happen rapidly (order of days, not months).  

• ALERT conducted a task order experiment in Adaptive Automated Target 
Recognition, sponsored by Drs. Laura Parker and John Fortune, DHS S&T 
• Phase 1 (12/17-6/18): Five performers: Boston University, Livermore Laboratory, University of 

Durham (UK), and two teams from Purdue University  

• Phase 2 (7/18-12/18): Three performers: Boston University, University of Durham, Purdue 1 

• Approaches had varying degrees of success 
• Identified issues in adaptation, validation, potential certification of approaches 

• Lessons could be valuable for evolving existing EDS systems to increase adaptability 

• Many performers changed AATR approach completely from Phase 1 to Phase 2, based on 
lessons from Phase 1 

 

 

 

 

 

 

So What, Who Cares? 
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• 3-D volumetric images of containers, obtained by 
IMATRON Scanner: single spectrum 

• Objects of interest in training data 
• Rubber sheets of different thickness, widths 
• Bulk saline bags, different sizes 
• Bulk clay, different sizes 

• Training data is available, distributed by ALERT to 
promote further research  

• Sequestered data for evaluation not distributed in Phase 
1, limited distribution in Phase 2 

• Additional objects of interest 
• Several compounds of different sizes, designed by 

Lawrence Livermore Laboratory 
• Included only in sequestered data 

The Data 
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• Requirements: adapt EDS ATR system to changes in: 

• Desired PD, PFA  

• Definition of threats: mass, density, thickness, type, … 

• Differential PD, PFA per threat class 

• New threats from specifications without training data  

• Text specifications provided to AATR  

• AATR required to modify ATR to meet specifications 

• Able to use training data to cross-validate predicted 
performance 

• Limited significantly in predicting performance for objects 
with no training data 

 

Adaptive ATR Tasks 
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• Typical of ATR processes, includes segmentation, feature 
extraction, and classification  

• Each team developed independent approaches to these 
functions 
• Different segmentation, features, classifiers 

• Classification approaches: 
• One vs. all SVM yielding probability of type, used for classification 

• Gaussian sum voxel classification followed by consensus 
smoothing of likelihoods, then segmentation and eventual 
classification 

• K-nearest neighbor classifiers 

• Random Forests 

• Note: no deep network algorithms given limited size of training 
data 

Phase I AATR Approaches 
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• Output of ATR:  Volumetric image with location of detected threat volumes in bag 

• Ground truth used in scoring:  Volumetric image of true threat volumes in bag, hand 
developed using videos of packing container plus manual recognition 

• Fundamental metrics:   

• Detection:  Significant overlap between detected threat volume and ground truth threat volume 

• False alarm: Reported threat volume that does not have corresponding ground truth threat volume 

Evaluation Metrics 

ATR 
Output 

Ground 
Truth 
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• Problem:  Changing Prob. Detection/False alarm tradeoffs 
for threats in training data 

• Increase importance of some threats, decrease others 

• Change region of responsibility (minimum mass, thickness, density 
spread, …) 

• Approaches: 

• Change thresholds for decisions, keeping similar processing of 
features, structures (Durham, Purdue 1, LLNL) 

• Reweight training data, retrain classifiers while cross-validating 
performance (Purdue 2, BU) 

 

 

Phase 1: Adaptation to Requirements for Known Threats 
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• Unknown threats:  Not present in training data 
• Only information is on simple RoR parameters: Density range, Mass range, Thickness range 

• Very different approaches investigated: 

• Randomly generate new training data using RoR guidance   integrate with existing training 
data (Durham, Purdue 2) 

• Randomly generate parameters of classifiers (e.g. Gaussian sum parameters, Feature samples 
for k-nearest neighbors)  generate single merged classifier (Purdue 1, LLNL) 

• Design separate classifier using reduced feature set, integrate into overall structure using 
parallel paths (BU)  

• Key issue: don’t have data to cross-validate performance!   

• Can assess PFA because of available background training data, but not PD 

• Addressed in this effort by tuning using multiple attempts (as in certification tests), but not 
practical in real scenarios with unknown threats 

 

Adaptation to Requirements for Unknown Threats 
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• Phase 1: only threat is the unknown threats 
• Four different tests, different unknown materials  

• Dichotomy: Teams 1-4 used same ATR features as for 
known threats; team 5 used parallel classifier 
• Teams 1-4 had to synthesize training features from textual 

specifications 

• Performance of separate classifier (team 5) with 
reduced feature set as good or better than 
alternatives.  

 

Phase 1: Performance of Approaches for  
Unknown Threats 
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Illustration of parallel ATR structure 
(team 5) 



• Test on scenarios with objects of interest that include both new threats as 
well as threats in the training set 
• Objects of interest include clay (with an extended region of responsibility: +300 MHU in 

range) as well as other unknown objects  

• Evaluate improvement in AATR performance on unknown threats when 
limited amounts of new training data is provided (from sequestered data) 

• Can develop ATR process on unknown threats  

• Compare performance of AATR with no additional training data vs ATR with additional 
training data 

• Methods: Performers allowed to iterate on algorithm parameters after 
seeing performance results 

• 4 iterations for AATR algorithm; 3 iterations for ATR algorithm  

 

 

Phase 2 Objectives 



• Desired: PD 90%, PFA 10% 

• Durham abandoned phase 1 approach, 
treated clay and M5 as materials with 
single feature: MHU 
• ATR uses more information on segmentation 

• Marquette generated synthetic features 
(histograms) for m5 
• ATR used histograms from limited training data for 

M5 and Clay, single classifier based on histogram 
feature 

• BU used parallel classifiers 
• Features for clay extended with simulated samples 

for expanded RoR 
• ATR used more features than AATR for M5, trained 

on limited data  

 

 

 

 

Phase 2 Results 
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• ATR algorithms can be extended to modify performance in response to computer-readable 
detection requirement specifications  
• Does require access to training data to tune/evaluate adaptation 
• ALERT developed methods to test AATRs to assure that they are adaptable  

• The PD of an AATR is equivalent to an ATR, albeit with a higher probability of false alarm (PFA).  
• When a few training images are supplied to the AATR the PFA of an AATR can be improved to approach the PFA 

of an ATR while maintaining good PD.  

• Difficulty for AATR: How to validate/verify detection performance against new threats  

• Cannot do iterated performance testing with sequestered data 
• Consider use of simulated data embedded in stream of commerce to generate cross-validation 
• Can also consider generation of simulated image data for training  not explored in current effort that used 

only reconstructed images.  

• Use of separate classifier for new threats provides easy path for expansion of existing EDS systems 
• Certified EDS component not modified 
• Can provide interim capability while additional threat characterization is obtained  

 
 
 

 

So what was learned?  
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• TSA  and vendors  are recognizing importance of AATR development 

• Rapid response to emerging threats 

• Risk-based screening 

• … 
 

• Next steps 

• Develop AATR variations of existing vendor algorithms for EDS 

• Develop process for certification of AATR systems 

• Develop extensions of AATR concepts applicable to checkpoint CT, AT2 and AIT 

• … 
 

 

 
 

 

Status and Next Steps  
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