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Problem space 
• Space: Adversarial Machine Learning (study security of 

machine learning algorithms under various attacks) 
• Problem: Need to test resilience of ML and AI algorithms in 

critical applications (cyber security, connected cars) and 
design robust ML methods 

• Solution: New optimization-based testing time and training-
time attacks against ML classifiers; resilient linear models 

• Results: Most ML algorithms are vulnerable; resilient ML 
models are needed 

• TRL: High for attacks; low for defenses  
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AI in Critical Applications 

• AI has potential in critical applications 
– Cyber security: intelligent defense algorithms 

– Connected cars: assist and warn drivers of safety issues 

– Healthcare: assist doctors in diagnosis and treatment 

 

• …But AI could become a target of attack 
– Traditional ML and deep Learning are not resilient to 

adversarial attacks 

– Consider entire AI lifecycle from training to testing 

– Many critical real-world applications are vulnerable 

– New adversarially-resilient algorithms are needed! 

 

AI 
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Adversarial Machine Learning: Taxonomy 
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Evasion Attacks 

• Evasion attack: attack against ML at testing time 
• Implications 

- Small (imperceptible) modification at testing time changes the 
classification 

- Attacks are easy to mount and hard to detect 

Adversarial 
example 
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Evasion Attacks for Security 
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• Most evasion attacks done in the context of image classification  
• Example: Malicious connection classifier (features aggregated by port) 
• Challenge: Attacks designed for continuous domains do not result in feasible 

adversarial examples in discrete domains 
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Adversarial Framework in Discrete Domains 

• General optimization framework for adversarial attacks in discrete domains  

– Respect mathematical dependencies (e.g., aggregated feature statistics) 

– Respect physical-world constraints (e.g., min and max packet size) 

• Threat model 

– Insert realistic network connections (e.g., Bro conn events) 

• Considered two cyber security applications 

– Public dataset for malicious network traffic classification 

– Enterprise dataset for malicious domain classification 
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• Evasion attacks can be easily mounted in discrete domains 
• General framework applicable to multiple applications 



How Effective are Evasion Attacks in Security? 

• Malicious connection classifier can be easily attacked by 
inserting a small number of connections (12 new Bro logs) 

• Significant degradation of ML classifiers under attack 
8 

Insert 12 new 
connections 



 
Adversarial Example in Connected Cars 

 

Original Image; steering angle = -4.25 Adversarial Image; steering angle = -2.25 
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• Convolutional Neural Networks used for steering angle 
prediction can be easily attacked 

• Considered both classification and regression prediction tasks 



Poisoning Availability Attacks 

Data 
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ML 
 model 

ML Algorithm Bird 

Testing 

• Attacker Objective: Degrade model predictions 
• Capability: Insert poisoning points in training 

 

Poisoned 
Training Data 
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Novel 
attacks 

• Linear regression can be easily poisoned at training time 
• Can train a resilient regression model by using our defense 



Resilient Linear Regression 

• Given dataset on 𝑛 points and 𝛼𝑛 
attack points,  find best model on 𝑛 
of 1 + 𝛼 𝑛 points 

• If 𝒘, 𝑏 are known, find points with 
smallest residual 

• But 𝒘, 𝑏 and true data distribution 
are unknown! 

• TRIM: robust optimization defense 
• Solve a trimmed optimization problem using a subset of points 
• Provable guarantees of worst-case attack impact 
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Network and Distributed System Security (NDS2) Lab 
• Machine learning and AI for cybersecurity 

– Threat detection  

• [Yen et al. 13], [Yen et al. 14], [Oprea et al. 15], [Li and Oprea 16], [Buyukkayhan et al. 
17], [Oprea et al. 18], [Duan et al. 18], [Ongun et al. 19] 

– Collaborative enterprise defense: Talha Ongun (PhD student), Oliver Spohngellert (MS 
student), Simona Boboila (Research Scientist) 

– IoT security: Talha Ongun 

– AI for cyber security games: Lisa Oakley (RS), Giorgio Severi (PhD student) 

• Adversarial machine learning and AI 

– Poisoning attacks and defenses  [Liu et al. 17], [Jagielski et al. 18], [Demontis et al. 19]: 
Matthew Jagielski (PhD student); Niklas Pousette Harger; Ewen Wang (undergraduate) 

– Evasion attacks for cyber security and connected cars [Chernikova et al. 19], [Chernikova and 
Oprea 19]: : Alesia Chernikova (PhD student) 

– Privacy and fairness [Jagielski et al. 19]: Matthew Jagielski; Alesia Chernikova  
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Evasion Attacks 

• [Szegedy et al. 13] Intriguing properties of neural networks 
• [Biggio et al. 13] Evasion Attacks against Machine Learning at Test Time 
• [Goodfellow et al. 14] Explaining and Harnessing Adversarial Examples 
• [Carlini, Wagner 17] Towards Evaluating the Robustness of Neural Networks 
• [Madry et al. 17] Towards Deep Learning Models Resistant to Adversarial Attacks 
• [Kannan et al. 18] Adversarial Logit Pairing 
• … 

Adversarial 
example 
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Evasion Attacks For Neural Networks 

Z(x) 

Softmax 

• Existing attacks: [Carlini and Wagner 2017], [Biggio et al. 2013], [Madry et al. 2018] 
• Challenge: Attacks designed for continuous domains do not result in feasible 

adversarial examples in cyber security (feature extraction layer) 
 

Input: Images 
represented as 
feature vectors 

Given input 𝑥 
Find adversarial example  

𝑥′ = 𝑥 + 𝛿 

min
𝛿
 𝑐 𝛿

2

2
+ 𝑍𝑡(𝑥 + 𝛿)  

 

Optimization Formulation 

Min distance Change class 
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Evasion Attacks for Security 
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Challenge 
• Attacks designed for continuous domains do not result in feasible adversarial examples  
Solution 
• New iterative attack algorithm taking into account feature constraints 

Network Connection 

Malicious Benign 
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Adversarial Framework for Discrete Domains 

Input: adversarial objective 𝐴(𝑥) 
            original point 𝑥0; target class 𝑡 
            learning rate 𝛼; 𝐷 dependent feature set  
Repeat until stopping condition: 
       𝑖 ← argmax ∇𝑥𝐴 𝑥    // Feature of max gradient 
       if  𝑖 ∈ 𝐷  
  𝑥𝑟 ← Find_Representative(𝑖)   // Find family representative 

  𝑥𝑟 ← Π 𝑥𝑟 − 𝛼  ∇𝑥𝑟𝐴 𝑥     // Gradient update of representative feature  

 Update_Dependecies(i)         // Update all dependent features  
       else  
               𝑥𝑖 ← Π 𝑥𝑖 − 𝛼  ∇𝑥𝑖𝐴 𝑥      // Gradient update for feature 𝑖 

       if 𝐶 𝑥 = 𝑡 return 𝑥   // Found adversarial example 
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Evasion Attack for Malicious Connection Classifier 

Time Src IP Dst IP Prot. Port Sent 
bytes 

Recv. 
bytes 

Sent 
packets 

Recv. 
packets 

Duration 

9:00:00 147.32.84.59 77.75.72.57 TCP 80 1065  5817 10 11 5.37 

9:00:05 147.32.84.59 87.240.134.159 TCP 80 950 340 7 5 25.25 

9:00:12 147.32.84.59 77.75.77.9 TCP 80 1256 422 5 5 0.0048 

9:00:20 147.32.84.165 209.85.148.147 TCP 443 112404 0 87 0 432 

Raw Bro 
logs 

• Family: all features defined per port 

• Attack: Insert TCP or UDP connections on the determined port 

• Representative features: number of packets in a connection 

• Dependent features: sent bytes, duration 
– Respect physical constraints on network  
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How Effective are Evasion Attacks in Security? 

20 

Insert up to  12 
new connections 

• Dataset: CTU-13, Neris botnet 
– 194K benign, 3869 malicious 

• Features: 756 on 17 ports 

• Model: Feed-forward neural 
network (3 layers), F1: 0.96 

• Baseline 1 

– Features selected at random 

• Baseline 2  

– Features and values selected at random 

 



How Effective are Evasion Attacks in Security? 

Significant degradation under attack 
21 

Malicious connection classifier Malicious domain classifier 



Evasion Attacks in Connected Cars 

Predict direction: Straight, Left, Right 
Predict steering angle 

● Udacity challenge 2: Predict the steering 

angle from camera images, 2014  
● Actions 
    - Turn left (negative steering angle below     
      threshold -T)  
    - Turn right (positive steering angle above    
      threshold T) 
    - Straight (steering angle in [-T,T]) 

● The full dataset has 33,608 images and 

steering angle values (70GB of data) 

A. Chernikova, A. Oprea, C. Nita-Rotaru, and B. Kim.  

Are Self-Driving Cars Secure? Evasion Attacks against Deep Neural Networks for Self-Driving Cars.  

In IEEE SafeThings 2019. https://arxiv.org/abs/1904.07370 22 

https://arxiv.org/abs/1904.07370


CNN for Direction Prediction 

P[“straight”] 

P[“left”] 

P[“right”] 

Input image 
 

Convolutional Layers Fully-Connected Layers 

Pixel values(X) 
Hidden 
Layers 

Logits(Z) 

SoftMax(F) 

● Two CNN architectures: 25 million and 467 million parameters 
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Evasion Attack against Regression 

● 10% of adversarial images have MSE 20 times higher than legitimate images 
● The maximum ratio of adversarial to legitimate MSE reaches 69 
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● First evasion attack for CNNs for regression 
task (predict steering angle) 

● New objective function 
− Minimize adversarial perturbation 
− Maximize the square residuals (difference 

between the predicted and true response) 

 
min
𝛿
 𝑐 𝛿

2

2
− 𝑔(𝑥 + 𝛿, 𝑦)  

such that 𝑥 + 𝛿 ∈ 0,1 𝑑 
𝑔 𝑥 + 𝛿, 𝑦 = F x + 𝛿 − y 2 



By changing only minimally the 
images (0.8 L2 perturbation), the 

attack has 100% accuracy! 

Significant degradation of 
accuracy under attack 

from AUC = 1 to AUC = 0.62 

How Effective are Evasion Attacks in Connected 
Cars? 
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Training-Time Attacks 

•  ML is trained by crowdsourcing data in many applications 

 

 

 

 

 

 

• Cannot fully trust training data!  

• Social networks 
• News articles 
• Tweets 

• Navigation systems 
• Face recognition 
• Mobile sensors 
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Optimization Formulation 

            argmax
𝐷𝑝

𝐴(𝐷𝑣𝑎𝑙 , 𝜽𝑝) 𝑠. 𝑡.  

𝜽𝑝 ∈ argmin
𝜽
𝐿(𝐷 ∪ 𝐷𝑝, 𝜽) 

 

Given a training set 𝐷  find a set of poisoning data points 𝐷𝑝  

that maximizes the adversary objective 𝐴 on validation set 𝐷𝑣𝑎𝑙  

where corrupted model 𝜽𝑝 is learned by  minimizing the loss 𝐿 on 𝐷 ∪ 𝐷𝑝 

Bilevel Optimization  
NP-Hard!  

First white-box attack for regression [Jagielski et al. 18] 

• Determine optimal poisoning point (𝒙𝑐,𝑦𝑐) 

• Optimize by both 𝒙𝑐 and 𝑦𝑐 
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Is It Really a Threat? 
• Case study on healthcare dataset (predict Warfarin medicine dosage ) 

• At 20% poisoning rate 

– Modifies 75% of patients’ dosages by 93.49% for LASSO 

– Modifies 10% of patients’ dosages by a factor of 4.59 for Ridge 

• At 8% poisoning rate 

– Modifies 50% of the patients’ dosages by 75.06%  

Quantile Initial Dosage Ridge Difference LASSO Difference 

0.1 15.5 mg/wk 31.54% 37.20% 

0.25 21 mg/wk 87.50% 93.49% 

0.5 30 mg/wk 150.99% 139.31% 

0.75 41.53 mg/wk 274.18% 224.08% 

0.9 52.5 mg/wk 459.63% 358.89% 
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Poisoning Regression  
• Improve existing attacks by a factor of 6.83 

Existing attack 

Novel 
attacks 

Predict loan rate with ridge regression  
(L2 regularization) 

Stronger 
attack 
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Resilient Linear Regression 

• Given dataset on 𝑛 points and 𝛼𝑛 
attack points,  find best model on 𝑛 
of 1 + 𝛼 𝑛 points 

• If 𝒘, 𝑏 are known, find points with 
smallest residual 

• But 𝒘, 𝑏 and true data distribution 
are unknown! 

argmin
𝑤,𝑏,𝐼
𝐿 𝑤, 𝑏, 𝐼 =

1

|𝐼|
 𝑓 𝒙𝑖 − 𝑦𝑖

2 + 𝜆Ω(𝒘)

𝑖∈𝐼

 

𝑁 = 1 + 𝛼 𝑛, 𝐼 ⊂ 1,… , 𝑁 , 𝐼 = 𝑛  
 

TRIM: alternately estimate model and find low residual points 
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