Resilient Machine Learning in Adversarial Environments

Alina Oprea Associate Professor Northeastern University

November 5, 2019

Problem space

- Space: Adversarial Machine Learning (study security of machine learning algorithms under various attacks)
- Problem: Need to test resilience of ML and AI algorithms in critical applications (cyber security, connected cars) and design robust ML methods
- Solution: New optimization-based testing time and trainingtime attacks against ML classifiers; resilient linear models
- **Results**: Most ML algorithms are vulnerable; resilient ML models are needed
- TRL: High for attacks; low for defenses

Alina Oprea Associate Professor, Northeastern University a.oprea@northeastern.edu

AI in Critical Applications

- AI has potential in critical applications
 - Cyber security: intelligent defense algorithms
 - Connected cars: assist and warn drivers of safety issues
 - Healthcare: assist doctors in diagnosis and treatment
- ...But AI could become a target of attack
 - Traditional ML and deep Learning are not resilient to adversarial attacks
 - Consider entire AI lifecycle from training to testing
 - Many critical real-world applications are vulnerable
 - New adversarially-resilient algorithms are needed!

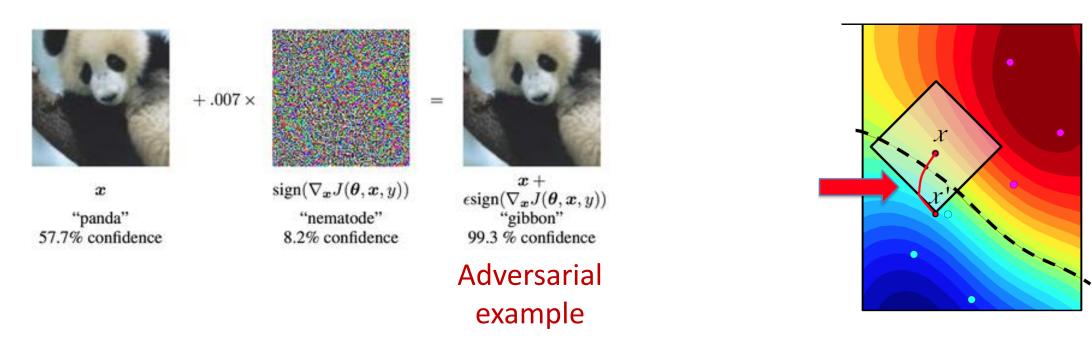
Adversarial Machine Learning: Taxonomy

Attacker's Objective

	Targeted Target small set of points	Availability Target majority of points	Privacy Learn sensitive information
Training	Targeted Poisoning Backdoor Trojan Attacks	Poisoning Availability Model Poisoning	-
Testing	Evasion Attacks Adversarial Examples	-	Membership Inference Model Extraction

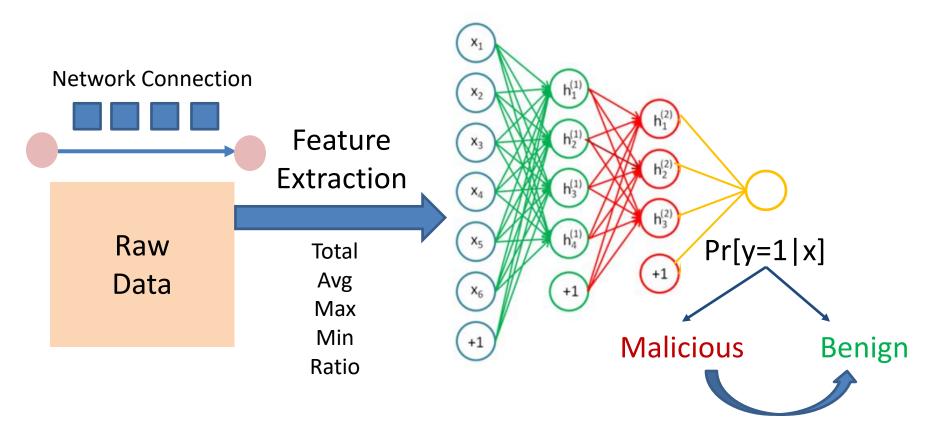
Learning stage

Evasion Attacks



- Evasion attack: attack against ML at testing time
- Implications
 - Small (imperceptible) modification at testing time changes the classification
 - Attacks are easy to mount and hard to detect

Evasion Attacks for Security

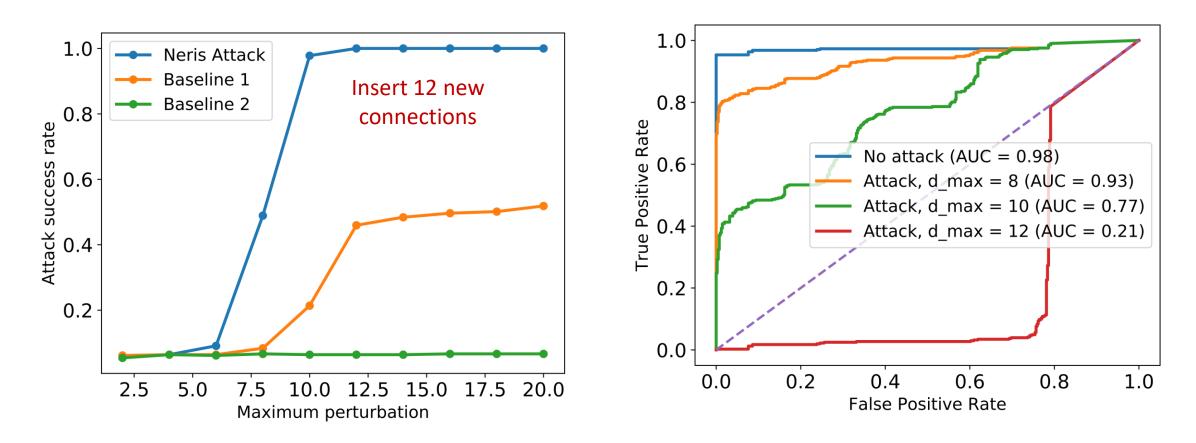


- Most evasion attacks done in the context of image classification
- Example: Malicious connection classifier (features aggregated by port)
- Challenge: Attacks designed for continuous domains do not result in feasible adversarial examples in discrete domains

Adversarial Framework in Discrete Domains

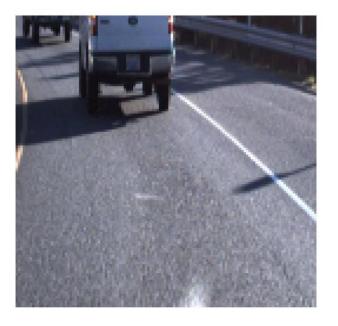
- General optimization framework for adversarial attacks in discrete domains
 - Respect *mathematical dependencies* (e.g., aggregated feature statistics)
 - Respect *physical-world constraints* (e.g., min and max packet size)
- Threat model
 - Insert realistic network connections (e.g., Bro conn events)
- Considered two cyber security applications
 - Public dataset for malicious network traffic classification
 - Enterprise dataset for malicious domain classification
 - Evasion attacks can be easily mounted in discrete domains
 - General framework applicable to multiple applications

How Effective are Evasion Attacks in Security?



- Malicious connection classifier can be easily attacked by inserting a small number of connections (12 new Bro logs)
- Significant degradation of ML classifiers under attack

Adversarial Example in Connected Cars

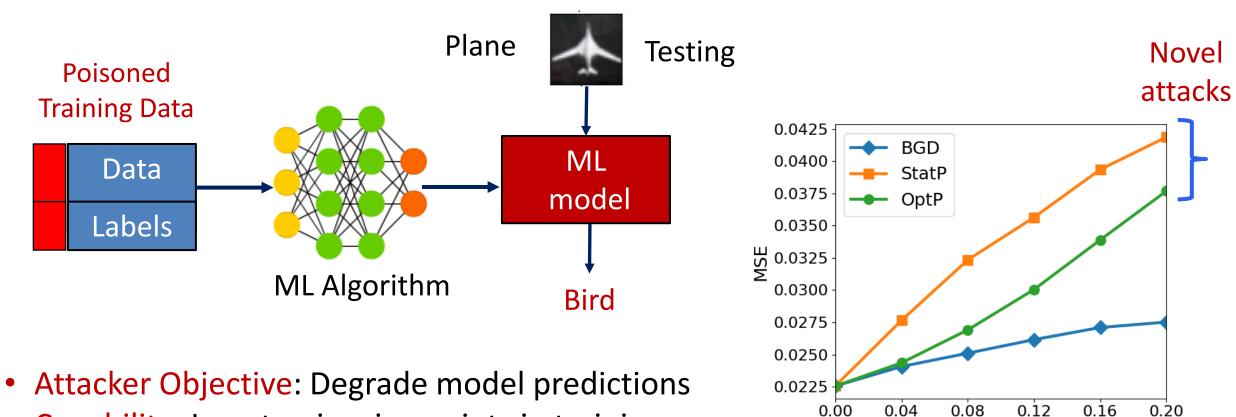


Original Image; steering angle = -4.25

Adversarial Image; steering angle = -2.25

- Convolutional Neural Networks used for steering angle prediction can be easily attacked
- Considered both classification and regression prediction tasks

Poisoning Availability Attacks

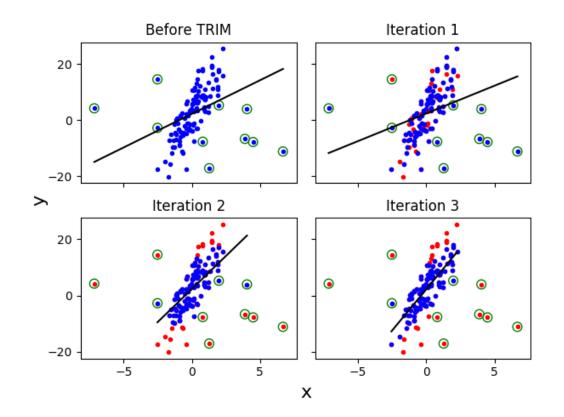


- Capability: Insert poisoning points in training
 - Linear regression can be easily poisoned at training time
 - Can train a resilient regression model by using our defense

Poisoning Rate

Resilient Linear Regression

- Given dataset on n points and αn attack points, find best model on nof $(1 + \alpha)n$ points
- If *w*, *b* are known, find points with smallest residual
- But *w*, *b* and true data distribution are unknown!



- TRIM: robust optimization defense
- Solve a trimmed optimization problem using a subset of points
- Provable guarantees of worst-case attack impact

Network and Distributed System Security (NDS2) Lab

- Machine learning and AI for cybersecurity
 - Threat detection
 - [Yen et al. 13], [Yen et al. 14], [Oprea et al. 15], [Li and Oprea 16], [Buyukkayhan et al. 17], [Oprea et al. 18], [Duan et al. 18], [Ongun et al. 19]
 - Collaborative enterprise defense: *Talha Ongun* (PhD student), *Oliver Spohngellert* (MS student), *Simona Boboila* (Research Scientist)
 - IoT security: Talha Ongun
 - AI for cyber security games: *Lisa Oakley* (RS), *Giorgio Severi* (PhD student)
- Adversarial machine learning and AI
 - Poisoning attacks and defenses [Liu et al. 17], [Jagielski et al. 18], [Demontis et al. 19]: Matthew Jagielski (PhD student); Niklas Pousette Harger; Ewen Wang (undergraduate)
 - Evasion attacks for cyber security and connected cars [Chernikova et al. 19], [Chernikova and Oprea 19]: : Alesia Chernikova (PhD student)
 - Privacy and fairness [Jagielski et al. 19]: Matthew Jagielski; Alesia Chernikova

Acknowledgements

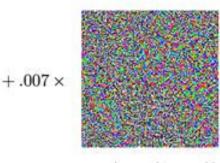
Contact Information Alina Oprea a.oprea@northeastern.edu

Northeastern University Cybersecurity & Privacy Institute

Backup Slides

Evasion Attacks

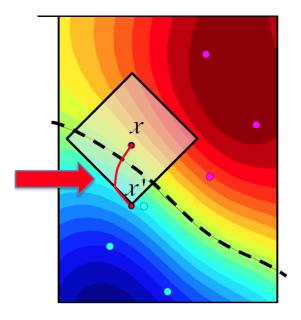
x "panda" 57.7% confidence



sign $(\nabla_x J(\theta, x, y))$ "nematode" 8.2% confidence

 $x + \epsilon \operatorname{sign}(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

Adversarial example



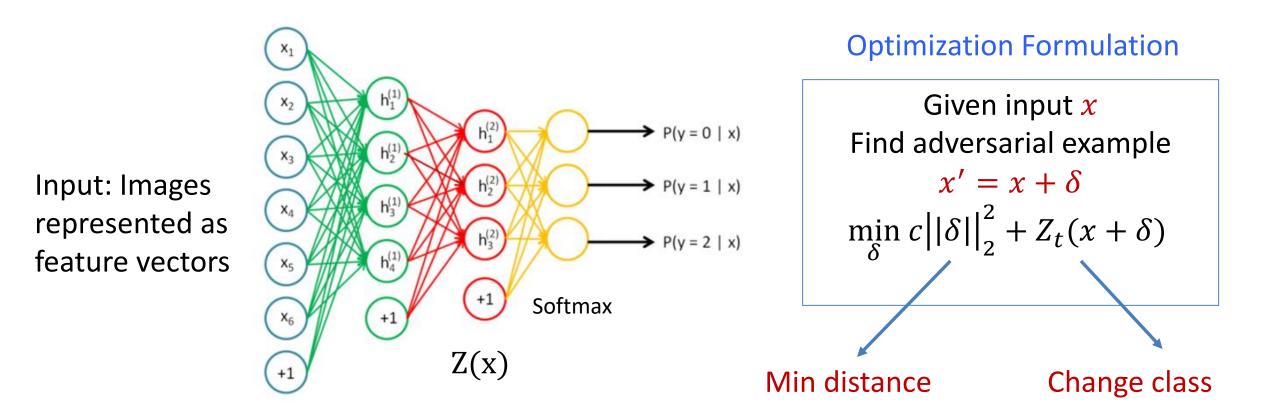
• [Szegedy et al. 13] Intriguing properties of neural networks

=

- [Biggio et al. 13] Evasion Attacks against Machine Learning at Test Time
- [Goodfellow et al. 14] Explaining and Harnessing Adversarial Examples
- [Carlini, Wagner 17] Towards Evaluating the Robustness of Neural Networks
- [Madry et al. 17] Towards Deep Learning Models Resistant to Adversarial Attacks
- [Kannan et al. 18] Adversarial Logit Pairing

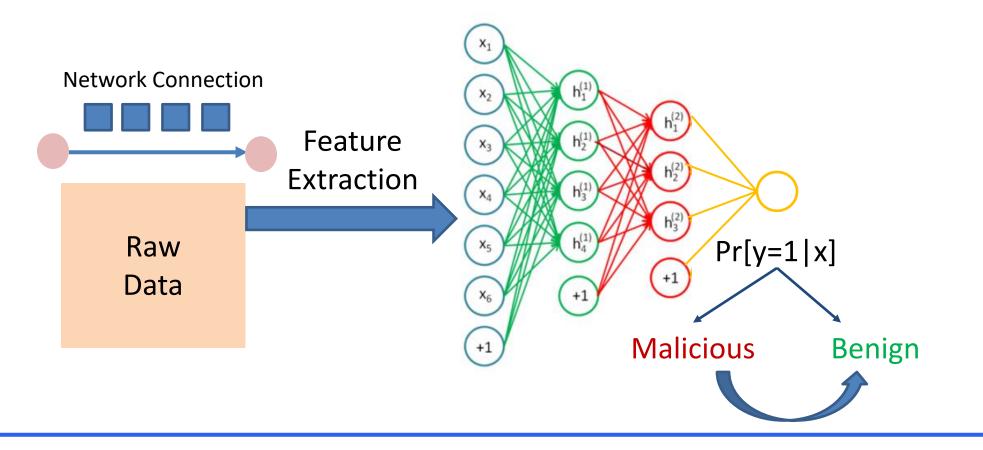
•

Evasion Attacks For Neural Networks



- Existing attacks: [Carlini and Wagner 2017], [Biggio et al. 2013], [Madry et al. 2018]
- Challenge: Attacks designed for continuous domains do not result in feasible adversarial examples in cyber security (feature extraction layer)

Evasion Attacks for Security



Challenge

- Attacks designed for continuous domains do not result in feasible adversarial examples Solution
- New iterative attack algorithm taking into account feature constraints

Adversarial Framework for Discrete Domains

Input: adversarial objective A(x)

original point x_0 ; target class t

learning rate α ; D dependent feature set

Repeat until stopping condition:

 $i \leftarrow \operatorname{argmax} \nabla_x A(x)$ // Feature of max gradient if $i \in D$

 $x_r \leftarrow \text{Find}_\text{Representative}(i) // \text{Find family representative}$ $x_r \leftarrow \Pi(x_r - \alpha \nabla_{x_r} A(x)) // \text{Gradient update of representative feature}$ Update_Dependecies(i) // Update all dependent features else

 $x_i \leftarrow \Pi(x_i - \alpha \nabla_{x_i} A(x))$ // Gradient update for feature *i* if C(x) = t return x // Found adversarial example

Evasion Attack for Malicious Connection Classifier

Raw Bro	Time	Src IP	Dst IP	Prot.	Port	Sent bytes	Recv. bytes	Sent packets	Recv. packets	Duration
logs	9:00:00	147.32.84.59	77.75.72.57	ТСР	80	1065	5817	10	11	5.37
	9:00:05	147.32.84.59	87.240.134.159	ТСР	80	950	340	7	5	25.25
	9:00:12	147.32.84.59	77.75.77.9	ТСР	80	1256	422	5	5	0.0048
	9:00:20	147.32.84.165	209.85.148.147	ТСР	443	112404	0	87	0	432

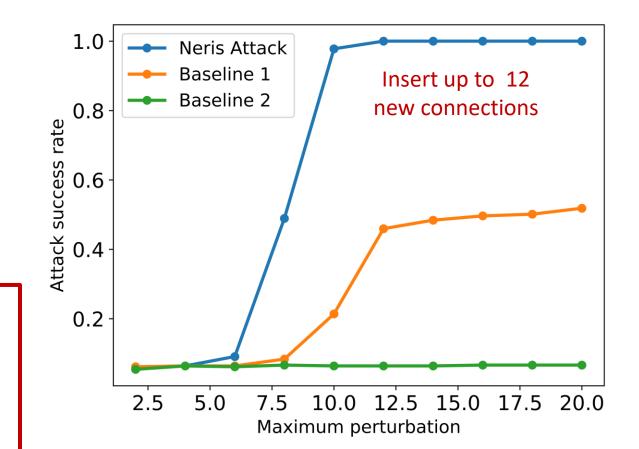
- Family: all features defined per port
- Attack: Insert TCP or UDP connections on the determined port
- Representative features: number of packets in a connection
- Dependent features: sent bytes, duration
 - Respect physical constraints on network

20

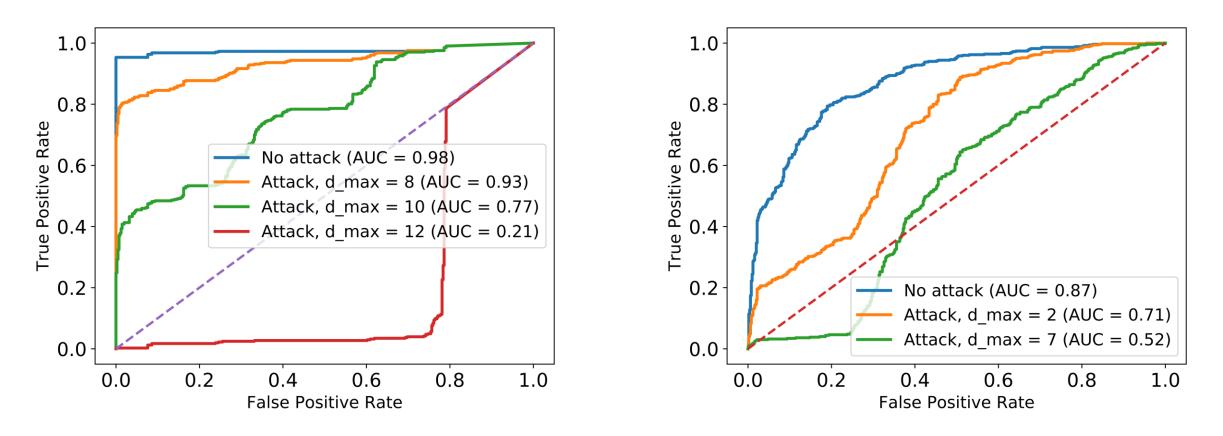
How Effective are Evasion Attacks in Security?

- Dataset: CTU-13, Neris botnet
 - 194K benign, 3869 malicious
- Features: 756 on 17 ports
- Model: Feed-forward neural network (3 layers), F1: 0.96

- Baseline 1
 - Features selected at random
- Baseline 2
 - Features and values selected at random



How Effective are Evasion Attacks in Security?



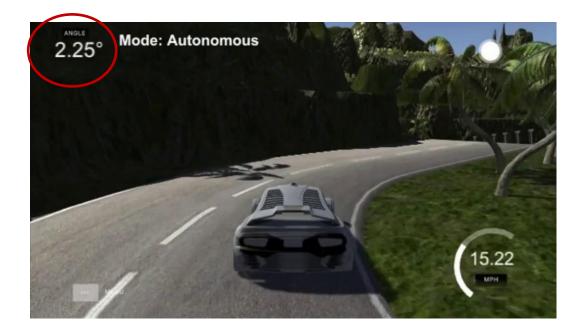
Malicious connection classifier

Malicious domain classifier

Significant degradation under attack

Evasion Attacks in Connected Cars

- Udacity challenge 2: Predict the steering angle from camera images, 2014
- Actions
 - Turn left (negative steering angle below threshold -T)
 - Turn right (positive steering angle above threshold T)
 - Straight (steering angle in [-T,T])
- The full dataset has 33,608 images and steering angle values (70GB of data)



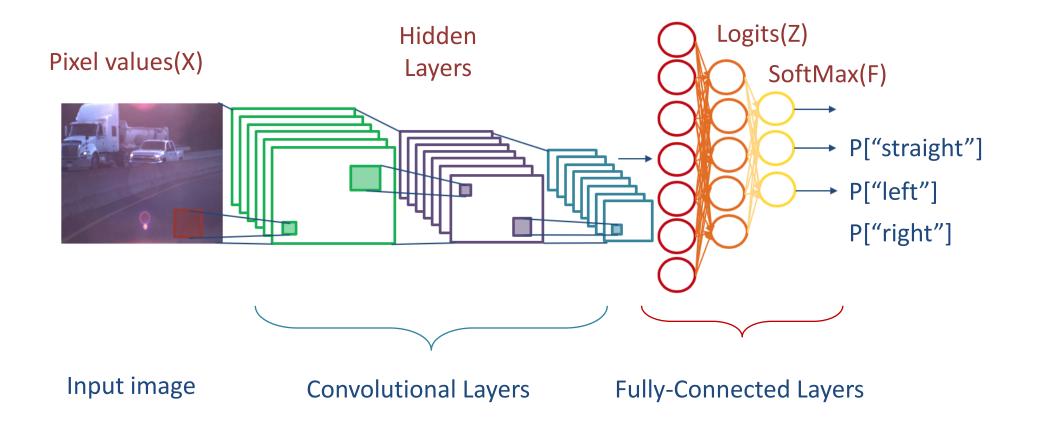
Predict direction: Straight, Left, Right Predict steering angle

A. Chernikova, A. Oprea, C. Nita-Rotaru, and B. Kim.

Are Self-Driving Cars Secure? Evasion Attacks against Deep Neural Networks for Self-Driving Cars.

In IEEE SafeThings 2019. https://arxiv.org/abs/1904.07370

CNN for Direction Prediction



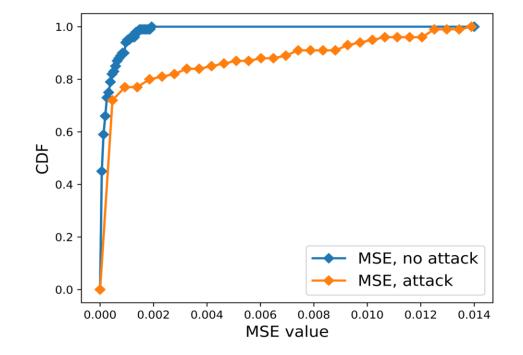
• Two CNN architectures: 25 million and 467 million parameters

Evasion Attack against Regression

- First evasion attack for CNNs for regression task (predict steering angle)
- New objective function
 - Minimize adversarial perturbation
 - Maximize the square residuals (difference between the predicted and true response)

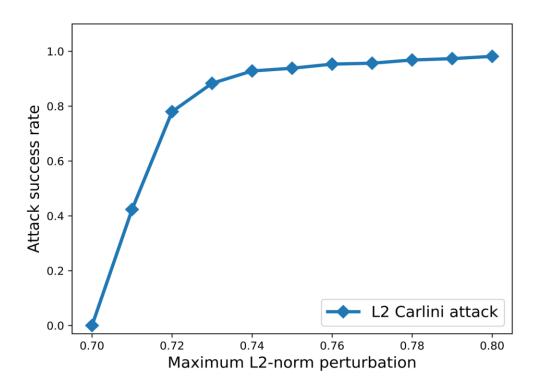
$$\min_{\delta} c \left\| \delta \right\|_{2}^{2} - g(x + \delta, y)$$

such that $x + \delta \in [0, 1]^{d}$
 $g(x + \delta, y) = [F(x + \delta) - y]^{2}$

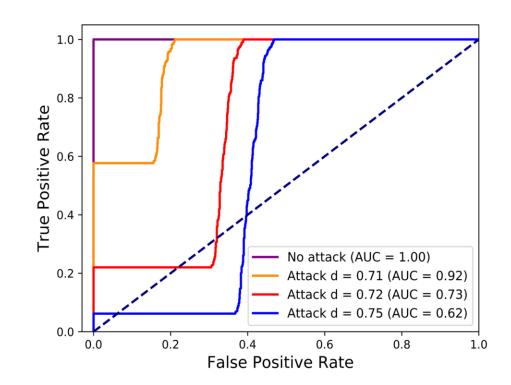


- 10% of adversarial images have MSE 20 times higher than legitimate images
- The maximum ratio of adversarial to legitimate MSE reaches 69

How Effective are Evasion Attacks in Connected Cars?



By changing only minimally the images (0.8 L2 perturbation), the attack has 100% accuracy!



Significant degradation of accuracy under attack from AUC = 1 to AUC = 0.62

Training-Time Attacks

• ML is trained by crowdsourcing data in many applications

- Social networks
- News articles
- Tweets

- Navigation systems
- Face recognition
- Mobile sensors

• Cannot fully trust training data!

Optimization Formulation

Given a training set D find a set of poisoning data points D_p

that maximizes the adversary objective A on validation set D_{val}

where corrupted model θ_p is learned by minimizing the loss L on $D \cup D_p$

$$\operatorname{argmax}_{D_p} A(D_{val}, \boldsymbol{\theta}_p) \text{ s. t.} \\ \boldsymbol{\theta}_p \in \operatorname{argmin}_{\boldsymbol{\theta}} L(D \cup D_p, \boldsymbol{\theta}_p)$$

Bilevel Optimization NP-Hard!

First white-box attack for regression [Jagielski et al. 18]

- Determine optimal poisoning point (x_c, y_c)
- Optimize by both \boldsymbol{x}_c and \boldsymbol{y}_c

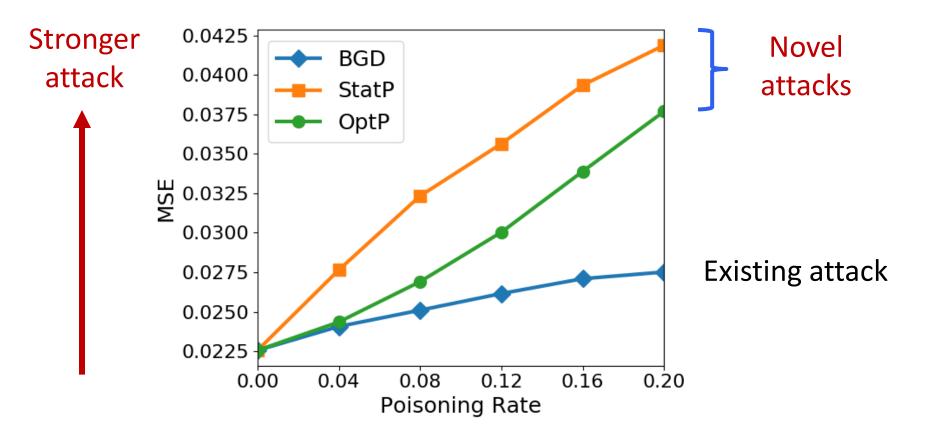
Is It Really a Threat?

- Case study on healthcare dataset (predict Warfarin medicine dosage)
- At 20% poisoning rate
 - Modifies 75% of patients' dosages by 93.49% for LASSO
 - Modifies 10% of patients' dosages by a factor of 4.59 for Ridge
- At 8% poisoning rate
 - Modifies 50% of the patients' dosages by 75.06%

Quantile	Initial Dosage	Ridge Difference	LASSO Difference
0.1	15.5 mg/wk	31.54%	37.20%
0.25	21 mg/wk	87.50%	93.49%
0.5	30 mg/wk	150.99%	139.31%
0.75	41.53 mg/wk	274.18%	224.08%
0.9	52.5 mg/wk	459.63%	358.89%

Poisoning Regression

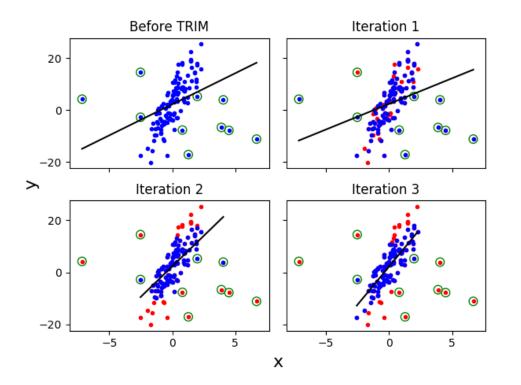
• Improve existing attacks by a factor of 6.83



Predict loan rate with ridge regression (L2 regularization)

Resilient Linear Regression

- Given dataset on n points and αn attack points, find best model on nof $(1 + \alpha)n$ points
- If *w*, *b* are known, find points with smallest residual
- But *w*, *b* and true data distribution are unknown!



TRIM: alternately estimate model and find low residual points

$$\underset{w,b,I}{\operatorname{argmin}} L(w,b,I) = \frac{1}{|I|} \sum_{i \in I} (f(\boldsymbol{x}_i) - y_i)^2 + \lambda \Omega(\boldsymbol{w})$$

$$N = (1 + \alpha)n, \quad I \subset [1, ..., N], \quad |I| = n$$

References

- Evasion attacks
 - A. Chernikova, A. Oprea, C. Nita-Rotaru, and B. Kim. Are Self-Driving Cars Secure? Evasion Attacks against Deep Neural Networks for Self-Driving Cars. In IEEE SafeThings 2019.
 - A. Chernikova and A. Oprea. Adversarial Examples for Deep-Learning Cyber Security Analytics. <u>http://arxiv.org/abs/1909.10480</u>, 2019.
- Poisoning attacks
 - C. Liu, B. Li, Y. Vorobeychik, and A. Oprea. *Robust Linear Regression Against Training Data Poisoning*. In AISEC 2017
 - M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. *Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning*. In IEEE S&P 2018
- Transferability of attacks
 - A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea, C. Nita-Rotaru, and F. Roli. Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks. In USENIX Security Symposium, 2019