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Problem space

Space: Adversarial Machine Learning (study security of
machine learning algorithms under various attacks)

Problem: Need to test resilience of ML and Al algorithms in
critical applications (cyber security, connected cars) and
design robust ML methods

Solution: New optimization-based testing time and training-
time attacks against ML classifiers; resilient linear models

Results: Most ML algorithms are vulnerable; resilient ML
models are needed

TRL: High for attacks; low for defenses
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Al in Critical Applications

* Al has potential in critical applications
— Cyber security: intelligent defense algorithms
— Connected cars: assist and warn drivers of safety issues
— Healthcare: assist doctors in diagnosis and treatment

e ...But Al could become a target of attack

— Traditional ML and deep Learning are not resilient to
adversarial attacks

— Consider entire Al lifecycle from training to testing
— Many critical real-world applications are vulnerable
— New adversarially-resilient algorithms are needed!




Learning stage

Adversarial Machine Learning: Taxonomy

Attacker’s Objective

Targeted Availability Privacy
Target small set of | Target majority of | Learn sensitive
points points information
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Evasion Attacks
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* Evasion attack: attack against ML at testing time
* Implications
- Small (imperceptible) modification at testing time changes the
classification
- Attacks are easy to mount and hard to detect



Evasion Attacks for Security

Network Connection

EENEN
N Feature
Extraction
aw Total Priy=1]|x]
Data Avg @
Max
Min Malicious Benign

Ratio u

* Most evasion attacks done in the context of image classification
 Example: Malicious connection classifier (features aggregated by port)
* Challenge: Attacks designed for continuous domains do not result in feasible

adversarial examples in discrete domains



Adversarial Framework in Discrete Domains

* General optimization framework for adversarial attacks in discrete domains
— Respect mathematical dependencies (e.g., aggregated feature statistics)
— Respect physical-world constraints (e.g., min and max packet size)

* Threat model
— Insert realistic network connections (e.g., Bro conn events)

* Considered two cyber security applications
— Public dataset for malicious network traffic classification
— Enterprise dataset for malicious domain classification

e Evasion attacks can be easily mounted in discrete domains
* General framework applicable to multiple applications



How Effective are Evasion Attacks in Security?
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* Malicious connection classifier can be easily attacked by
inserting a small number of connections (12 new Bro logs)
* Significant degradation of ML classifiers under attack




Adversarial Example in Connected Cars

Original Image; steering angle = -4.25 Adversarial Image; steering angle =-2.25

e Convolutional Neural Networks used for steering angle
prediction can be easily attacked
* Considered both classification and regression prediction tasks



Poisoning Availability Attacks

Poisoned
Training Data

Data a, 0-04007
”‘ 0.03751
Labels 0.0350 -
L 0.03251
=
0.0300
0.0275 -
0.0250
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e Capability: Insert poisoning points in training
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* Linear regression can be easily poisoned at training time
* Can train a resilient regression model by using our defense
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Resilient Linear Regression

Before TRIM lteration 1

* Given dataset on n points and an 20 1
attack points, find best model onn
of (1 + a)n points

_20 -

* Ifw,b are known, find points with >
smallest residual 20
 But w, b and true data distribution 0

are unknown!

—20

e TRIM: robust optimization defense
* Solve a trimmed optimization problem using a subset of points
* Provable guarantees of worst-case attack impact
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Network and Distributed System Security (NDS2) Lab

 Machine learning and Al for cybersecurity
— Threat detection

* [Yen et al. 13], [Yen et al. 14], [Oprea et al. 15], [Li and Oprea 16], [Buyukkayhan et al.
17], [Oprea et al. 18], [Duan et al. 18], [Ongun et al. 19]

— Collaborative enterprise defense: Talha Ongun (PhD student), Oliver Spohngellert (MS
student), Simona Boboila (Research Scientist)

— loT security: Talha Ongun
— Al for cyber security games: Lisa Oakley (RS), Giorgio Severi (PhD student)
e Adversarial machine learning and Al

— Poisoning attacks and defenses [Liu et al. 17], [Jagielski et al. 18], [Demontis et al. 19]:
Matthew Jagielski (PhD student); Niklas Pousette Harger; Ewen Wang (undergraduate)

— Evasion attacks for cyber security and connected cars [Chernikova et al. 19], [Chernikova and
Oprea 19]: : Alesia Chernikova (PhD student)

— Privacy and fairness [Jagielski et al. 19]: Matthew Jagielski; Alesia Chernikova
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Evasion Attacks
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e [Szegedy et al. 13] Intriguing properties of neural networks

e [Biggio et al. 13] Evasion Attacks against Machine Learning at Test Time

* [Goodfellow et al. 14] Explaining and Harnessing Adversarial Examples

* [Carlini, Wagner 17] Towards Evaluating the Robustness of Neural Networks
 [Madry et al. 17] Towards Deep Learning Models Resistant to Adversarial Attacks
* [Kannan et al. 18] Adversarial Logit Pairing
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Evasion Attacks For Neural Networks

—> Ply=0[x)

Input: Images —> Ply=1]x)
represented as
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feature vectors

Optimization Formulation

Given input x
Find adversarial example
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2
min c||8][, + Z¢(x + )

/ AN

/ N

Min distance Change class

* Existing attacks: [Carlini and Wagner 2017], [Biggio et al. 2013], [Madry et al. 2018]
e Challenge: Attacks designed for continuous domains do not result in feasible
adversarial examples in cyber security (feature extraction layer)
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Evasion Attacks for Security

Network Connection

HENN
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Challenge

* Attacks designed for continuous domains do not result in feasible adversarial examples
Solution
* New iterative attack algorithm taking into account feature constraints
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Adversarial Framework for Discrete Domains

Input: adversarial objective A(x)
original point x; target class t
learning rate a; D dependent feature set
Repeat until stopping condition:
i « argmax V,A(x) // Feature of max gradient
ifieD
X, < Find_Representative(i) // Find family representative
X, < H(xr —a erA(x)) // Gradient update of representative feature
Update Dependecies(i) // Update all dependent features
else
x; < I(x; — a inA(x)) // Gradient update for feature i

if C(x) = t return x // Found adversarial example



Evasion Attack for Malicious Connection Classifier

Time Src IP Dst IP Prot. | Port | Sent Recv. Sent Recv. | Duration
Raw Bro bytes | bytes | packets | packets
Iogs 9:00:00 147.32.84.59 77.75.72.57 TCP 80 1065 5817 10 11 5.37
9:00:05 | 147.32.84.59 | 87.240.134.159 TCP 80 950 340 7 5 25.25
9:00:12 | 147.32.84.59 77.75.77.9 TCP 80 1256 422 5 5 0.0048
9:00:20 | 147.32.84.165 | 209.85.148.147 | TCP 443 112404 0 87 0 432

Family: all features defined per port
Attack: Insert TCP or UDP connections on the determined port
Representative features: number of packets in a connection

Dependent features: sent bytes, duration
— Respect physical constraints on network
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How Effective are Evasion Attacks in Security?

* Dataset: CTU-13, Neris botnet
— 194K benign, 3869 malicious " || —*— Neris Attack
Baseline 1
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— Features and values selected at random
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True Positive Rate

How Effective are Evasion Attacks in Security?
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Malicious domain classifier

Significant degradation under attack
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Evasion Attacks in Connected Cars

e Udacity challenge 2: Predict the steering  5ee | Mods: Autonomous
angle from camera images, 2014
e Actions
- Turn left (negative steering angle below
threshold -T)
- Turn right (positive steering angle above
threshold T)
- Straight (steering angle in [-T,T])
e The full dataset has 33,608 images and
steering angle values (70GB of data) Predict direction: Straight, Left, Right
Predict steering angle

A. Chernikova, A. Oprea, C. Nita-Rotaru, and B. Kim.
Are Self-Driving Cars Secure? Evasion Attacks against Deep Neural Networks for Self-Driving Cars.
In IEEE SafeThings 2019. https://arxiv.org/abs/1904.07370
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CNN for Direction Prediction

Hidden | Logits(Z)
P|X€| ValueS(X) Layers SOftMaX(F)
' \I_ L, — P[“straight”]
i — P[“left”]
1 = .— in] P[Hrightn]
— _/
- N - e
Input image Convolutional Layers Fully-Connected Layers

e Two CNN architectures: 25 million and 467 million parameters
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Evasion Attack against Regression

® First evasion attack for CNNs for regression
task (predict steering angle)
e New objective function
— Minimize adversarial perturbation
— Maximize the square residuals (difference
between the predicted and true response)

mSin c||6||z —gx+6,y)
such that x + & € [0,1]¢
g(x +6,y) = [F(x+6) —y]°
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MSE value

e 10% of adversarial images have MSE 20 times higher than legitimate images
® The maximum ratio of adversarial to legitimate MSE reaches 69
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Significant degradation of
accuracy under attack
from AUC=1to AUC=0.62
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Training-Time Attacks

ML is trained by crowdsourcing data in many applications

Social networks
News articles
Tweets

SV
7')F

Cannot fully trust training data!

A\

A

* Navigation systems
* Face recognition
* Mobile sensors
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Optimization Formulation

Given a training set D find a set of poisoning data points D,

that maximizes the adversary objective A on validation set D,,;

where corrupted model @, is learned by minimizing the loss L on D U D,,

-

: argmax A(Dyq;, 0,) s. L.

Dp /
0, € arg;nin LDV D,,0)

\

J

Bilevel Optimization
NP-Hard!

First white-box attack for regression [Jagielski et al. 18]

* Determine optimal poisoning point (x.,y,)

* Optimize by both x,. and y.
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Is It Really a Threat?

e Case study on healthcare dataset (predict Warfarin medicine dosage )
* At 20% poisoning rate

— Modifies 75% of patients’ dosages by 93.49% for LASSO

— Modifies 10% of patients’ dosages by a factor of 4.59 for Ridge
* At 8% poisoning rate

— Modifies 50% of the patients’ dosages by 75.06%

m Initial Dosage Ridge Difference |LASSO Difference

15.5 mg/wk 31.54% 37.20%
0.25 21 mg/wk 87.50% 93.49%
0.5 30 mg/wk 150.99% 139.31%
0.75 41.53 mg/wk 274.18% 224.08%

0.9 52.5 mg/wk 459.63% 358.89%




Poisoning Regression

* Improve existing attacks by a factor of 6.83
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attack
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Predict loan rate with ridge regression
(L2 regularization)
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Resilient Linear Regression

Before TRIM Iteration 1

* Given dataset on n points and an
attack points, find best model onn
of (1 + a)n points

—20 -

* If w,b are known, find points with >

smallest residual

e Butw, b and true data distribution 0
are unknown!

/TRIM: alternately estimate model and find low residual points\
1
argmin L(w, b,1) = mZ(f(xi) -y + 2Q(w)

w,b,l -
Lel

_ N=(1+4+a)mn, I cli,.. NJj I| =n p
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