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• Mission space: Prohibited items detection in carry-on items 

• Problem: Need to increase detection, reduce cognitive load on TSA screeners 
while maintaining throughput 

• Solution: Demonstrate a prototype deep learning based operator assist 
algorithm for guns, sharp objects, blunts, and non 3-1-1 liquids on board 
existing X-ray machine 

• Results: Fieldable model mean average precision, mAP ~ 0.92 and 
250ms/image latency [Duke’s analysis], across 4 classes 

• Technology Readiness Level: 7 – Prototype demo in operational environment 

• dstrellis@rapiscansystems.com, kevin.liang@duke.edu 

 

 
 

 

SO WHAT, WHO CARES? 
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• Collected X-ray images with 620DVs 
• Over 13,000 with Firearms + parts, sharp objects, blunt objects, and liquids 

• Over 450,000 Stream-of-Commerce (SOC) from five U.S. airports 

• Hand-labeled the threats in the images with tight bounding boxes 
• Split data into 70/10/20 train/validation/test sets 

• Trained and compared 4 popular convolutional object detection models  
• SSD-InceptionV2 

• Faster-RCNN-ResNet101 

• Faster-RCNN-ResNet152 

• Faster-RCNN-InceptionResNetV2 

 

 

APPROACH 
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GROUND TRUTH 

Pistol Knife Crowbar Bottle of Liquid 

Images shown were obtained from Rapiscan-owned 620DV not in the TSA configuration 
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Intersection over Union (IoU): measures 
the overlap of two bounding boxes (e.g. 

ground truth and a detection) 

EVALUATION METRICS 

Precision = % of detections 
that are correct 
 
Recall = % of objects that you 
find 
 
Average Precision is the area 
under the Precision vs Recall 
(PR) curve 

Images courtesy of Wikipedia and Medium.com 
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PR RESULTS 

(a) Sharps 
(b) Blunt objects 
(c) Firearms 
(d) Liquids 

Note: Analysis is 
performed by Duke and 
not confirmed by TSA. 
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• Inference time with NVIDIA GeForce GTX1080 GPU 

 

 

 

 

• Algorithm needs to run with minimal latency to keep up with passenger 
flow. Average of <750ms was our measure. 

• We chose the ResNet152 option for our prototype implementation 

 

INFERENCE TIME RESULTS 

Model Average Latency (ms/image) mAP across 4 classes 

SSD-Inception V2 42 0.752 

Faster-RCNN-ResNet101 222 0.917 

Faster-RCNN-ResNet152 254 0.924 

Faster-RCNN-InceptionResNetV2 812 0.941 
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IMPLEMENTATION 

• Weapon alarms displayed on Operator Workstation monitors 
• Operates with no significant latency with NVIDIA GeForce GTX1080 GPU 

Images shown were obtained from Rapiscan-owned 620DV not in the TSA configuration 
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EXAMPLE DETECTIONS 

Images shown were obtained from Rapiscan-owned 
620DV not in the TSA configuration 

• Example detections with Faster-RCNN-
ResNet152. 

• Ground truth boxes are in red, while color 
denotes predicted class. 
• (a-b): Sharps 
• (c-d): Firearms 
• (e): Blunt 
• (f): Liquids 
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EXAMPLE DETECTION (MULTI-VIEW) 

Images shown were obtained from Rapiscan-owned 620DV not in the TSA configuration 

• Top and side views of a bag containing one knife. Detection is missed on the side view but detected 
on the top view.  

• Demonstrates a benefit of multiple views. 
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BACKUP SLIDES 
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Faster R-CNN 
• Two-stage detection paradigm: 

1. Convolutional neural network (CNN) acts as a 
feature extractor, generating a set of feature maps 

2. Stage 1: Region Proposal Network (RPN) produces 
a set of region proposals from the feature maps 

3. Feature regions corresponding to the mostly likely 
proposals are cropped 

4. Stage 2: Proposed regions are refined and 
classified with a neural network 
 

• Entire network can be trained jointly 
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Faster R-CNN 

• Proposals are made relative to references: “anchor boxes” 
• Diverse anchor box sizes help the model capture objects of many sizes 
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Single-Shot MultiBox Detector (SSD) 

• Single-stage detection paradigm: 
• Classifications and bounding box prediction are performed once 
• Different scales are capture at different layers of the network 


