

# Deep Convolutional Object Detection for X-ray Baggage Screening

Dan Strellis<sup>1</sup> Kevin Liang<sup>2</sup> ADSA21 November 5, 2019

<sup>1</sup> Rapiscan Systems; Fremont, California
<sup>2</sup> Duke University; Durham, North Carolina

This research has been funded by the Transportation Security Administration (TSA) under Contract #HSTS04-16-C-CT7020



#### SO WHAT, WHO CARES?

- Mission space: Prohibited items detection in carry-on items
- **Problem:** Need to increase detection, reduce cognitive load on TSA screeners while maintaining throughput
- **Solution:** Demonstrate a prototype deep learning based operator assist algorithm for guns, sharp objects, blunts, and non 3-1-1 liquids on board existing X-ray machine
- Results: Fieldable model mean average precision, mAP ~ 0.92 and 250ms/image latency [Duke's analysis], across 4 classes
- Technology Readiness Level: 7 Prototype demo in operational environment
- <u>dstrellis@rapiscansystems.com</u>, <u>kevin.liang@duke.edu</u>

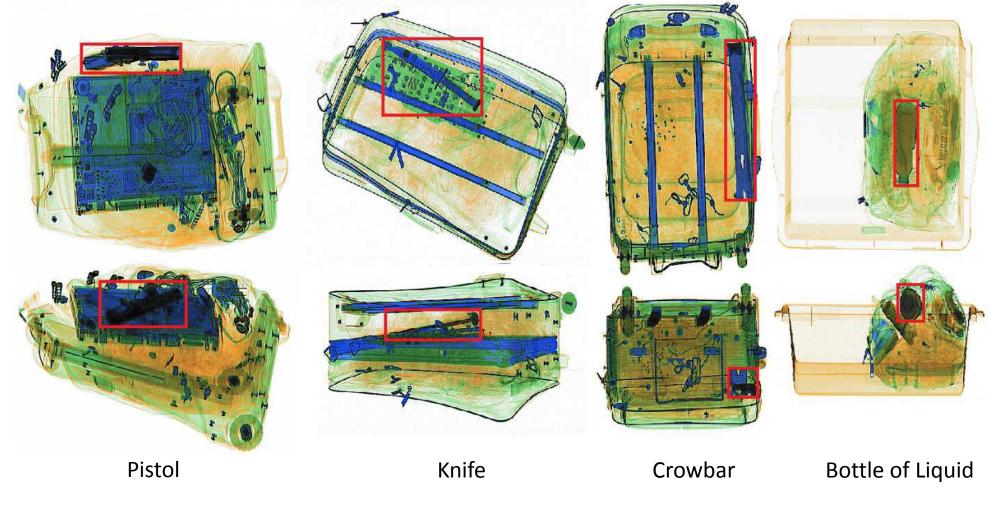


## APPROACH

- Collected X-ray images with 620DVs
  - Over 13,000 with Firearms + parts, sharp objects, blunt objects, and liquids
  - Over 450,000 Stream-of-Commerce (SOC) from five U.S. airports
- Hand-labeled the threats in the images with tight bounding boxes
  - Split data into 70/10/20 train/validation/test sets
- Trained and compared 4 popular convolutional object detection models
  - SSD-InceptionV2
  - Faster-RCNN-ResNet101
  - Faster-RCNN-ResNet152
  - Faster-RCNN-InceptionResNetV2



### **GROUND TRUTH**



Images shown were obtained from Rapiscan-owned 620DV not in the TSA configuration

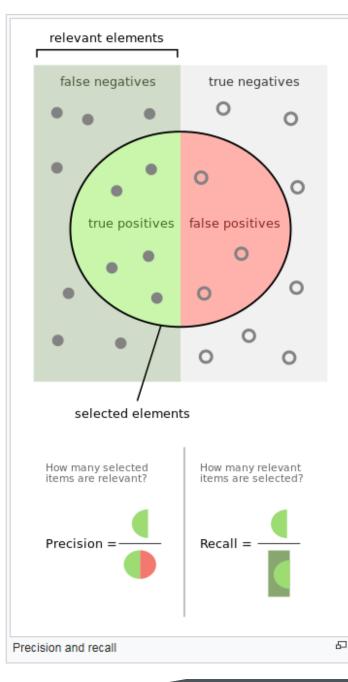
# EVALUATION METRICS

Intersection over Union (IoU): measures the overlap of two bounding boxes (e.g. ground truth and a detection)



loU definition

#### Images courtesy of Wikipedia and Medium.com





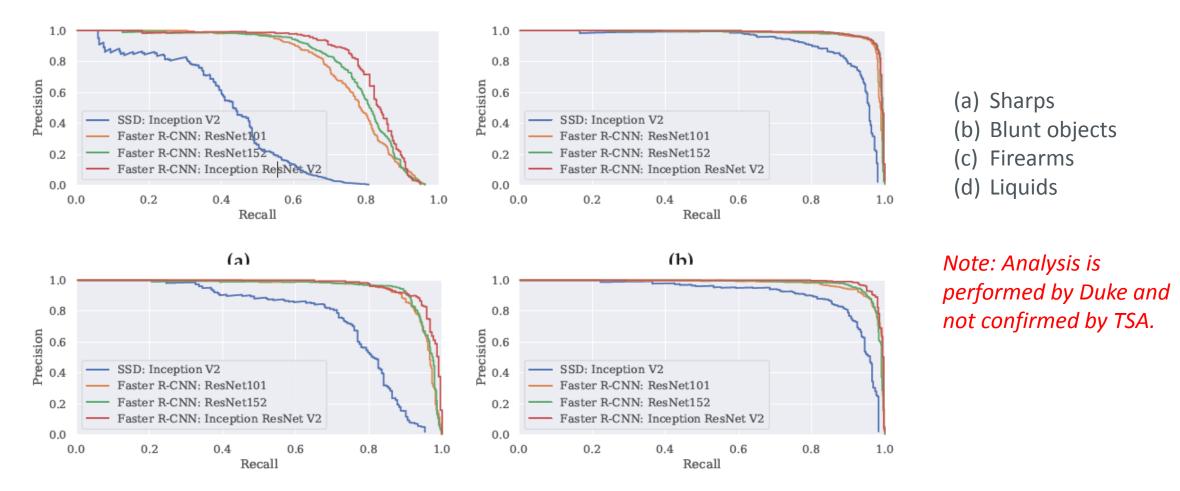
Precision = % of detections that are correct

Recall = % of objects that you find

Average Precision is the area under the Precision vs Recall (PR) curve



#### **PR RESULTS**



(c)

(d)



# INFERENCE TIME RESULTS

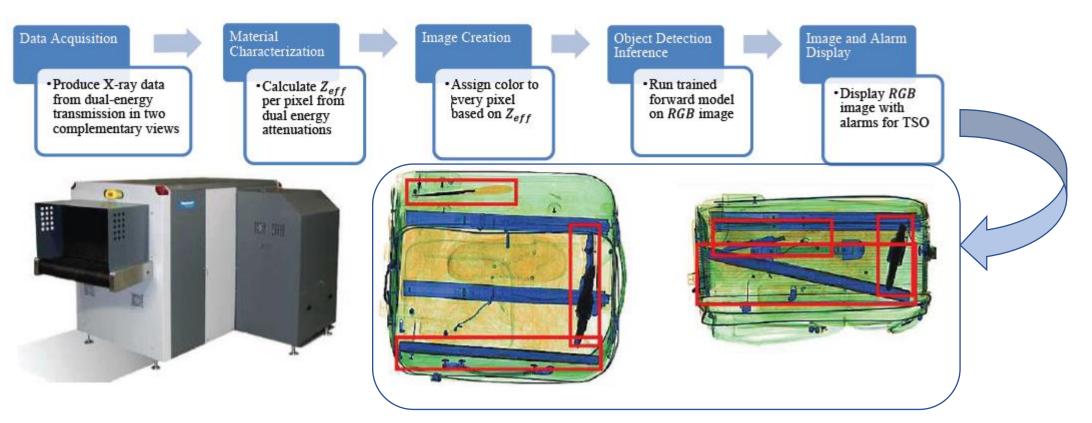
• Inference time with NVIDIA GeForce GTX1080 GPU

| Model                         | Average Latency (ms/image) | mAP across 4 classes |
|-------------------------------|----------------------------|----------------------|
| SSD-Inception V2              | 42                         | 0.752                |
| Faster-RCNN-ResNet101         | 222                        | 0.917                |
| Faster-RCNN-ResNet152         | 254                        | 0.924                |
| Faster-RCNN-InceptionResNetV2 | 812                        | 0.941                |

- Algorithm needs to run with minimal latency to keep up with passenger flow. Average of <750ms was our measure.
- We chose the ResNet152 option for our prototype implementation



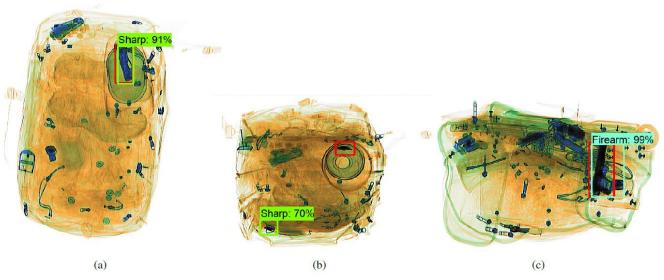
## IMPLEMENTATION



- Weapon alarms displayed on Operator Workstation monitors
- Operates with no significant latency with NVIDIA GeForce GTX1080 GPU

Images shown were obtained from Rapiscan-owned 620DV not in the TSA configuration

## EXAMPLE DETECTIONS



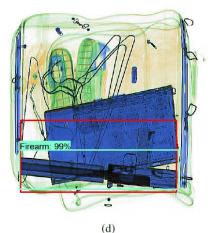
- Example detections with Faster-RCNN-ResNet152.
- Ground truth boxes are in red, while color denotes predicted class.
  - (a-b): Sharps
  - (c-d): Firearms
  - (e): Blunt
  - (f): Liquids

Images shown were obtained from Rapiscan-owned 620DV not in the TSA configuration

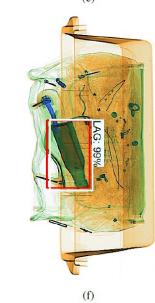
ONE COMPANY, TOTAL SECURITY

Rapiscan<sup>°</sup> systems

An OSI Systems Company



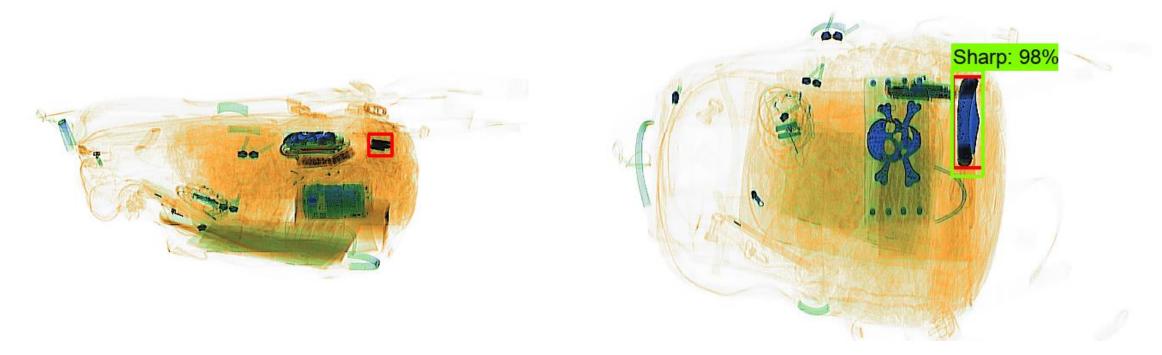




(e)



# EXAMPLE DETECTION (MULTI-VIEW)



- Top and side views of a bag containing one knife. Detection is missed on the side view but detected on the top view.
- Demonstrates a benefit of multiple views.

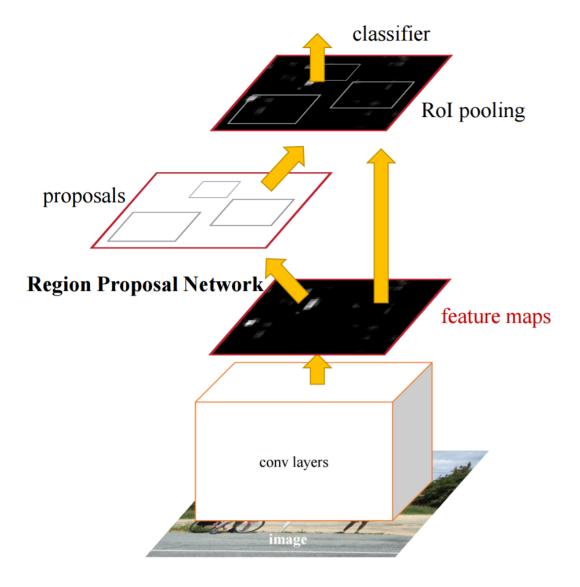
Images shown were obtained from Rapiscan-owned 620DV not in the TSA configuration



#### **BACKUP SLIDES**



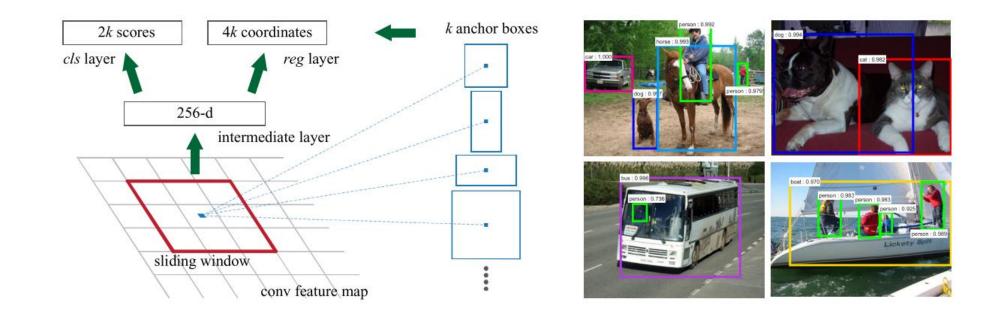
## Faster R-CNN



- Two-stage detection paradigm:
  - 1. Convolutional neural network (CNN) acts as a feature extractor, generating a set of feature maps
  - 2. Stage 1: Region Proposal Network (RPN) produces a set of region proposals from the feature maps
  - 3. Feature regions corresponding to the mostly likely proposals are cropped
  - 4. Stage 2: Proposed regions are refined and classified with a neural network
- Entire network can be trained jointly



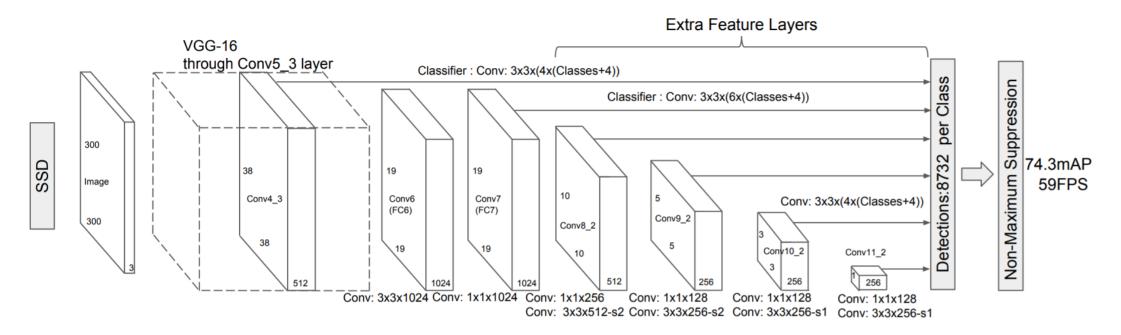
#### Faster R-CNN



- Proposals are made relative to references: "anchor boxes"
- Diverse anchor box sizes help the model capture objects of many sizes



# Single-Shot MultiBox Detector (SSD)



- Single-stage detection paradigm:
  - Classifications and bounding box prediction are performed once
  - Different scales are capture at different layers of the network