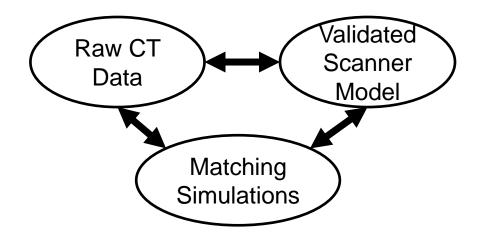
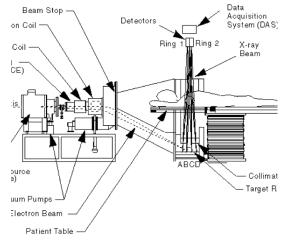
The TO3 Data Resource: An Open Resource for CT Algorithm Development for Security

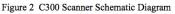
Clem Karl Boston University


TO3 Data Resource Goals

1. Raw data, models, documentation in public domain

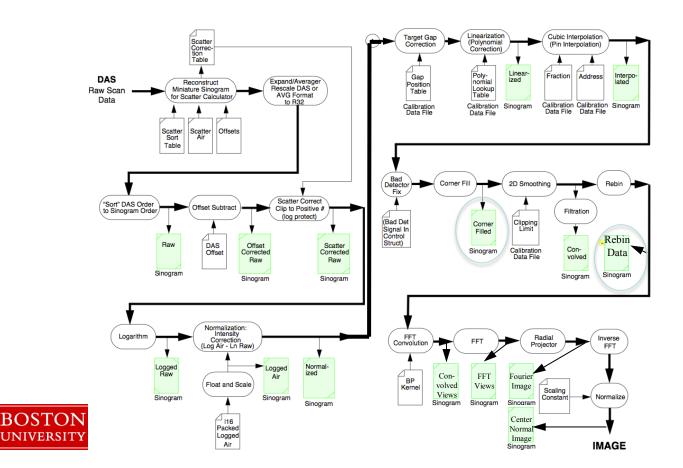
- Allow third parties to develop advanced algorithms
- 2. Provide data for objects of interest
 - water, saline, rubber sheets, glass beads
- 3. Support generation of performance metrics
 - E.g. clouds, mean, std
 - Multiple scans of objects in different configurations, orientations, etc
- 4. Allow work on single and dual energy CT


The TO3 Data Resource Overview



- The only open access X-ray security resource for third parties
- Based on Imatron C300 medical scanner
- 82 Gb of validated raw data, images, and software
- Mixed mono and dual energy
- Scanned data of "security interest" (i.e. not medical)
 - Imatron data team: Tip Partridge, Doug Boyd, Jon Harmon, Sam Song
- Validated scanner model
 - U. Chicago: Patrick La Riviere, Phillip Vargas
- Coupled validated simulation
 - Marquette University: Taly Gilat-Schmidt

Imatron C300 Scanner


- Imatron C-300 Medical CT scanner
- Electron beam scanner
- Fixed detector rings, scanning electron beam to circumferential targets
- Native fan geometry
- Open access to machine details

Bob Senzig (GE Healthcare) provided access to source code

Imatron C300 Data and Software

 Access to software processing chain, raw sinogram data products and nominal reconstructions

Examples:

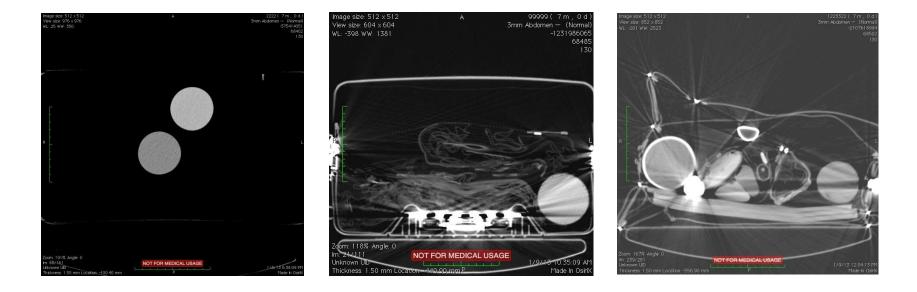
- Filled fanbeam
- Rebinned
 parallel
- Corresponding projection models

TO3 Data Resource Scan Collection

- Validated OOI Scans
 - 61 scans
- High clutter scans of suitcase bag
 - 1 scans
- Scans of bottles with glass and plastic beads
 - 3 scans
- Al and Cu calibration objects, resolution phantoms, and a suitcase bag
 - 34 scans
- Resolution & multipin phantom, suitcase bags
 - 21 scans
- 95kV calibration scans
 - 11 scans
- Mixture of DE (95keV, 130keV) and SE (130keV) scans

Scanned Objects

- Reference and calibration objects
 - (e.g. NIST 10010-A, AI steps, Cu steps, etc)
- Objects of interest
 - Small set of materials in different configurations for cloud generation
 - Distilled water in plastic, metal, large, small containers
 - Doped water (salt) in plastic, metal, large, small containers
 - Rubber sheets
- Other known materials in know configurations
 - Beads, graphite, teflon, PVC
 - cylinders, sheets, cubes
- Clutter objects
 - Cultural objects (e.g. pots, shoes, AC adapter, radio)
- Validated materials (McMaster Carr)


Scanned configuration examples

 Multiple scans of objects in different configurations, orientations, etc for cloud

Example Reconstructions

Clean

Medium Clutter

High Clutter

Data share access

Data Resource warehoused on networked BU server

- Raw data, reconstruction software, documentation, scanner models, simulations
- Process for obtaining data
 - Request NDA from ALERT
 - Obtain account to access network data share site
 - Must agree to have publications reviewed ("REAP'ed") for problematic wording
- Access to data is available after project ends
- Researcher results & documentation can be posted as well
- A reconstruction algorithm development clearing house

Lessons Learned

- Imatron not a natural dual energy machine
 - Kv has to be switched between scans, requiring recalibration, slowing acquisition
- We were not careful enough planning the validation & recording
 - Can't uniquely identify some objects in some cases (e.g. water vs saline)
 - Material properties not what vendor claimed (e.g. beads)
- Improvements incorporated for TO4

Acknowledgements

- Limor Martin for data validation, correction, and documentation
- Tip Partridge for technical assistance

Conclusion

- TO3 Data Resource met original goal
- Open set of data, models, and simulation now exists for algorithm development
- TO3 project researchers used data to develop new algorithms
- New algorithms impact on clouds and metrics can be evaluated

