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Image Comparison

Less streaking and shading artifacts
Better homogeneous regions reconstruction
Better segmentation
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Algorithm : Main Idea

Non-Metal Passing Ray

SSMART IDEA

1. Don’t use bad data. =» Throw it away

2. Let’s use only non-metal passing rays for non-metal image reconstruction.
(Use only Blue Ray-sums)

3. Let’s compensate metal passing ray with segmentation and re-projection.
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How SSMART works ? (1/2)

Key Computations

Lease-Squares solution

Original Sino.
Metal Component Selection
Th>A

\

7 Yo
Thresholding,
Element wise Binary Map:
Logical computation Red=1

Simple Blue=0
Projection

A4
Sparse Reconstruction

A lot of math and computation.(Back-up slide)

Xe=(X-Xg)*(Xp)’

V

Image subtraction
Element-wise
multiplication
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How SSMART works ? (2/2)

Key Computations

Segmented artifacts are projected
to Sinogram domain

Re-projection

\4
Element-wise
Subtraction

Note that Y has
positive and negative

A4

values and not
bounded in Y, map.

Image Reconstruction SSMART
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Streak artifacts reduction & segmentation (1/2)

SSMART improved image:

1. Reduced metal size
Suppressed streaking artifacts
Cleaner homogeneous regions
Better segmentation

Streaking artifact SSMART

2.
3.
4.

Ground Truth

Reduced metal size

Homogeneous regions



Streak artifacts reduction & segmentation (2/2)

SSMART also improved Image:
1. Shading artifacts
2. Big metal boundaries

SSMART

Ground Truth

Cleaner metal
boundaries

artifact

More uniform texture



Shading Artifacts & Segmentation

Xrec SSMART

Source of shading artifacts

Less reliable

measurement i - -
Less reliable measurements corrupt whole fidelity term.

=>» Hard to correct with regularization term.
=>» S0, better not to use.

Source of shading artifacts

Less reliable | S A e
measurement | “—"




Problem Cases

SSMART

No significant metal artifact
but strong regularization

Slice #28

y

Parameter
Selection
Problem
Removed shading artifact but
Slice #1 no boundary recovery
Need Dual

Energy ?




Sparseness vs. SSMART parameters
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Slice Number Slice Number

Slice #28

SSMART parameter adjustment needs:
1. MPR and/or MRSR

2. Metal pixel intensity

3. Metal size

Slice #9 Slice #21
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Summary

Strength Weakness
« Works well with small * Not good for many metal
dense metal components. components.
 Great performance with a « Generates new streak
few objects. artifacts when MPR &
» Removes low frequency MRSR are high.
shading artifacts.  Threshold sensitive.
 Improve homogeneity In  Additional projection

uniform objects. required.



Future Research Topic

* More accurate system model would improve image quality.
(Now, pencil-beam ray model and some artifacts near COR)

* Test with raw sinogram (less pre-processed) coupling with
accurate system model. (Now, ‘.clp’ is used)

« SSMART parameters can be adjusted by sparseness
measurements.(Now, same parameters for all slices)

« Multi-level iterative threshold method can be tested. (Now,
regardless pixel intensity and size of metal, all metal pixels
are treated equally)
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How SparseRecon works ?

 SparseRecon Is a modification of “image de-blurring” [1,2]
* |terative shrinkage algorithm
X = argmin %Ily — Ax||? + Ap(x)
g(;} (ijmage, y: sinogram, A: system matrix, A: weighting parameter,
p(x) = |x| —slog(1 +|)SC—|)
which leads to near L1-norm for small value of s>0 (s=0.0001 in
our case).

* The new component : A = H[W¥Y, ®] _
Y and @ are two n x n unitary matrices. And H is a

conventional forward system matrix
 Therefore, the algorithm becomes to minimize:

1
% = argmin S |ly — H(Wxy + @xe)lI* + Ap(xy) + 2p(xo)

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," Selected

Topics in Signal Processing, IEEE Journal of, vol. 1, pp. 586-597, 2007.
M. Elad, B. Matalon, and M. Zibulevsky, "Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization," Applied and

Computational Harmonic Analysis, vol. 23, pp. 346-367, 2007.
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