

Feature Space Cloud Shrinkage by Iterative Reconstruction

Jeffrey S. Kallman and Harry E. Martz, Jr. Lawrence Livermore National Laboratory LLNL-PRES-642452-DRAFT

For Presentation at TO3 Symposium

October 24, 2013

Summary

 The improvements in image quality afforded by iterative reconstruction can serve to reduce the effects of containers and concealment ("shrink the cloud"), and thus should improve the PD / PFA ratio.

- The analytic reconstruction method used was EDS vendor FBP
- The iterative reconstruction method used was ray-weighted CCG
- For the material examined
 - The full cloud (including effects of container and concealment) area was reduced ~50%
 - The cloud without the effects of concealment was reduced by ~38%
 - The cloud incorporating only the central 90% of the points was reduced by ~48%

Goal of DHS Funded Iterative Reconstruction Work

- Work performed for S&T Directorate of DHS: IAA HSHQPM-10-X-00034 SOW
- Goal was to show that iterative reconstruction techniques can reduce the effects of containers and concealment, and thus improve PD/PFA
- We sometimes refer to this spread as a cloud
 - Part of the cloud is due to variations in material composition
 - Part of the cloud is due to containers, bag parts, beam hardening and scatter
 - Part of the cloud is due to issues with segmentation

Analytical Reconstruction

Iterative Reconstruction

Features can include x-ray attenuation coefficients, Zeff, density, texture, kurtosis

Background

- We used training data acquired on a vendor machine for a homogeneous material.
 - 7 containers scanned unconcealed as well as concealed in 10 bags
- Used constrained-conjugate-gradient optimization technique accelerated by approximate error line search* for reconstruction.
- Used a third party segmentation system to extract threat objects from both the vendor reconstruction and the iterative reconstruction.
 - This system over-segmented the reconstructed bags.
 - A human unconnected with the reconstruction research was used to select the segments that contained the material of interest
- Features extracted for threat objects were high and low channel mode (value at the peak of the attenuation distribution).
- Feature space used for comparison of iterative to analytic clouds is ($\mu_{\rm high}$, Ratio $\mu_{\rm low}/\mu_{\rm high}$).
- Cloud size is the area inside the convex hull of the cloud in the feature space.
 - The convex hull is the smallest convex perimeter that encloses all of the points in the cloud.
 - We generated convex hulls for all points (concealed and unconcealed), unconcealed points only, and the central 90% of the points (mix of concealed and unconcealed)
 - The central 90% of the points was chosen by repeatedly generating a convex hull and removing the hull point most distant from the center of mass of the current point set until only 90% of the original points remained.

^{*} J. S. Kallman and S. G. Azevedo, "Ray-weighted constrained conjugate-gradient tomographic reconstruction for security applications," LLNL-JRNL-560413, presented at the 2nd International Conference on Image Formation in X-ray CT, 2012.

- The graph shows the effects of 7 containers (labeled C1 through C7) and 10 concealments on material
 - Solid symbols are unconcealed material in various containers
 - Open symbols are concealed material in various containers and various situations

- The graph shows the effects of 7 containers (labeled C1 through C7) and 10 concealments on material
- Convex hull for all points is displayed

- The graph shows the effects of 7 containers (labeled C1 through C7) and 10 concealments on material
- Convex hulls are displayed for all points (black) as well as all unconcealed container points (orange)

- The graph shows the effects of 7 containers (labeled C1 through C7) and 10 concealments on material
- Convex hull including only the central 90% of points is shown in blue.

- The graph shows the effects of 7 containers (labeled C1 through C7) and 10 concealments on material
 - Solid symbols are unconcealed material in various containers
 - Open symbols are concealed material in various containers and various situations

- The graph shows the effects of 7 containers (labeled C1 through C7) and 10 concealments on material
- Convex hull for all points is displayed

- The graph shows the effects of 7 containers (labeled C1 through C7) and 10 concealments on material
- Convex hulls are displayed for all points (black) as well as all unconcealed container points (orange)

- The graph shows the effects of 7 containers (labeled C1 through C7) and 10 concealments on material
- Convex hull including only the central 90% of points is shown in blue.

Summary

• The improvements in image quality afforded by iterative reconstruction can serve to reduce the effects of containers and concealment ("shrink the cloud"), and thus should improve the PD / PFA ratio.

- The analytic reconstruction method used was EDS vendor FBP
- The iterative reconstruction method used was ray-weighted CCG
- For the material examined
 - The full cloud (including effects of container and concealment) area was reduced ~50%
 - The cloud without the effects of concealment was reduced by ~38%
 - The cloud incorporating only the central 90% of the points was reduced by ~48%