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Executive Summary

* We use numerical optimization to reconstruct an intermediate image,
forward-project this intermediate image, and these forward projections
guide the replacement of metal projections in a sinogram

e Sinogram replacement: Naidu et al [3]
* Intermediate image : critical component

* Metal artifacts are reduced visually and quantitatively
* 17 images
* Visually: dark and bright streaks are reduced
* Quantitative measurement was only in 37 uniform objects: G :197 => 121 HU

 Limitation is the amount of metal (as expected)
* Much to explore to improve the close neighborhood of metal
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Our approach: Generate “Prior-image”

* |deal (noise-free, mono-energetic, etc.)
Ax = b,
where
A is the forward model : image -> sinogram
X is the image
b is the scanner sinogram

* We use constrained optimization

* Weighted least-squares: reduced weights on metal samples

* Constraint for beam hardening and scatter
* Measured projections are lower than ideal

* Regularization by total variation norm
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Constrained optimization

min (Ax — b)"W(Ax — b) + Bllx||rv
X
s.t. [p(Ax —b)+30,> 0

W : more metal => smaller weight
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The constraint: Beam hardening and scatter
Ip = diag(p(i))

% 4
1 z a;il,(j) >0
p(i) = 1 j=1
0 otherwise
\
I,(j) = {1 Xj = Mj M, = 4000 MHU
? 0 otherwise M,=10,000 MHU

o, is the expected noise per sample.
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Practical Issues

e Convex problem is too big to solve with solvers like Mosek: size of A
~10° x 10°

* Practical implementation:
* Miniaturization: but resolution mismatch in FBP and optimal solution
* |solate artifacts by solving two convex problems
Artifacts = Least Squares - Constrained WLS
* Least squares matches the FBP solution re: artifacts
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Evaluation: Visual and Quantitative

* Traditional evaluation of MAR is visual
* Metal-free ground truth is unavailable

e Quantitative evaluation:

* Ours
* CT distribution within regions known to be uniform (“uniform objects”)
* We generated 2D masks for liquids, stacked sheets, blocks etc.
* Variance decreases in MAR images, extrema closer to mean
» KS2 test: distributions are different at 0.05 significance level
* Autocorrelation is closer to ideal in MAR images
* Segmentation (Region growing) followed by segmentation evaluation [13]

e Stratovan clouds
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Results 1
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Original

MAR

Test-statistic is shown
p-values not shown

Mean Std KS2
1 | 843 159 | 0.34
893 53
2 | 769 133 | 037
833 70
3 | 988 162 | 0.14
1019 | 123
4 | 1025 | 79 0.28
979 74
Mean Std KS2
1| 1150 | 106 | 0.06
1138 | 99
2 | 910 226 | 0.21
907 177
3| 1337 | 72 0.25
1355 | 58
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KS2 : Largest difference between CDFs
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Results 2

Mean Std KS2
1 695 201 0.42
875 129

2 1795 164 0.23

1853 88

3 1276 220 0.23

1245 118

4 1092 228 0.17

1063 166

5 1114 316 0.17

_____ 1132 157
Mean Std KS2
1 917 111 0.09

946 74
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Results 3

Mean Std KS2

1 1022 356 0.31

1167 158

2 1071 189 0.15

1068 133

Mean Std KS2

1 1034 144 0.29

1110 145

2 | 929 274 0.25
1017 117

3 | 878 237 0.4
809 90

4 | 1165 244 0.48

1416 233

5 1167 245 0.09

1132 145
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Results 4: Problems

Mean Std KS2

1 1244 143 0.73

977 197
2 935 306 0.56
1245 114

Mean Std KS2

1 ] 939 145 0.16

958 91
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Results 5: Comparison with Iterative Projection Replacement

Original IPR Ours

Mean of standard deviation, weighted by object size

o obes Lot e ovs

19 (8 images)

37 (17 images) 197 * 121 * Not yet done
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Rubber sheet and doped water (Stratovan)
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Some of the above results are misleading:

Original MAR

Example 1

Example 2
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Our region growing results

CT

Parameters:

High Thresh = 3000 HU
Low Thresh =-500 HU
Delta = 50 HU

Min Mass =100 g

Region Growing

Label
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Our Segmentation Evaluation: R.G. +

Mutual Info

JEntropyg, EntropyMS  Bipartite Match + Volume Recovery
0.87 0.95 70001 < data 10000y - data
6000+ —slope =0.76 —slope =0.94
0.70 0.77 8000+ T
5000+
0.69 0.83 I o i
0 4000} . 6000 /
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0.65 0.65 1000} e .
. . i / ] % %
(] Scal— - ' - 1) c— ' - -
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GT GT
0.54 L L1 error=0.27 L1 error=0.2
0.59 0.82
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Strengths and Weaknesses

* Robustness from constrained optimization:
 tested with 27 pieces of metal

* Weaknesses®
* The neighborhood of metal is not reconstructed well: L2 error is not good enough
e Slow: Using general purpose solver
* Thin edges are degraded if they are parallel to streaks and within or close to them.

*We are working on improvements. The inherent limitation is the amount of metal in the scan, which is
expected for any MAR algorithm
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Recommendation for future projects

* New Objective Function
* Elastic net

e Tighten Constraint
* Reorder the metal projections in amplitude (still convex)

e Full-scale reconstruction
» Alternate solvers (eg. projection onto convex sets)

* Probabilistic iterative reconstruction
e Substitute weight matrix with a PDF
 Compare the properties

e Suggestions on solving full-scale?
e Cannot decompose & parallelize the problem
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Impact of weighting
and constraint

Obijects fused: too many projections discarded
Intensity misrepresented

No metal, no constraints No metal, non-negativity Our weights, non-negativity

Verburg 2012 Zhang 2011 Solver: Mosek

Solver: NESTA Solver: Mosek
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Parameters:

High Thresh = 3000 HU
Low Thresh =-500 HU
Delta = 50 HU

Min Mass =100 g
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Seq. and Det. Impact - StdDev Change

Improvement plots ?

Improvement Improvement Improvement Improvement
Compactness vs. StdDev Compactness vs. Tumbler Compactness vs. CCL Compactness vs. BoundaryContrast
8 - ; 8 - : g _ : 8 _ ;
g8 L 2 2 2 |
- .% - i @ - | ® §°
; :
E g % ;
8 2 & |
® 2 " g g
® : < ; :
z]e 33 Fg g
E n e 3 ¢
g ] g . g . 8 :
'4_‘ I T T T 1 T I T 1 T 1 T I T I T 1 by I T T T 1
=1.00 =0,50 0.00 0,50 1.00 =1.00 -0.50 0,00 0.50 1.00 =1.00 =0.50 0,00 0.50 1.00 -1.00 -0,50 0,00 0,50 1.00
Detection Impact - Compactness Change Seq. Precision - Compactness Change Seq. Precision - Compactness Change Seq, Precision - Compactness Change

= UCSD | School of M Lawrence Livermore
Jacobs | Engineering National Laboratory




