

Physics

ALERT Reconstruction Initiative TO#3: Sinogram processing

Patrick J. La Rivière and Phillip A. Vargas

October 24, 2013

Doped water CCL

Doper water CCL segmentation is improved.

Rubber sheet CCL

Sheet CCL seems to suffer from two outliers (red circles).

Water CCL

Water CCL performance is improved.

Mean vs Std Dev.

Our water cloud suffers from two outliers (red circles).

Sheet Segmentation improvement

XREC

Sinogram prcessing

Medium clutter 4, slice 134

Physics

Institution and Researchers

- Patrick La Riviere, Ph.D.
- Associate Professor of Radiology
 - The University of Chicago

- Phillip Vargas, M.S.
- Assistant Professor, Harold Washington
 Community College
- Part-time research specialist, U of Chicago

Physics

Algorithm

Physics

Adaptive filtering

Removes worst noise spikes from line integrals by neighborhood smoothing. Figure from: Mark Kachelriess, et al., Med. Phys., 28:475.

Physics Frequency-split Metal Artifact Reduction

Combines the high frequencies of an uncorrected image with the more reliable low frequencies of an image which was corrected with an inpainting-based MAR method. Fig from: Esther Meyer et al., Med. Phys., 39, p. 1904.

Normalized Metal Artifact Reduction

Combines the high frequencies of an uncorrected image with the more reliable low frequencies of an image which was corrected with an inpainting-based MAR method. Fig from: Meyer et al., Med Phys 37, p 5482.

Physics

Sinogram restoration

Modeling of Poisson-dominated noise behavior and potentially many other effects including anode angle, off-focal radiation, afterglow, crosstalk.

Physics

Four potential reconstruction strategies

- 1. **Current commercial approach**: Attempt to estimate the line integrals from the data by standard sinogram preprocessing/calibration techniques and then use analytic reconstruction to obtain the image.
- 2. Promising iterative approach: Attempt to estimate the line integrals from the data by standard sinogram preprocessing/calibration techniques and then use iterative reconstruction with statistical modeling to obtain the image.
- 3. Pipe dream iterative approach: Use iterative reconstruction to estimate the image directly from the transmission measurements by modeling all effects.
- 4. **Our approach**: Use iterative methods with statistical modeling to estimate the line integrals and then use analytic reconstruction to obtain the image.

Physics

Our approach to sinogram processing

- We have formulated CT sinogram preprocessing as a statistical restoration problem.
 - The goal is to estimate as accurately as possible the attenuation line integrals needed for reconstruction from the set of noisy, degraded measurements.
 - We do so by maximizing a penalized-likelihood objective function.
 - Reconstruction is then done by use of existing methods.
- The hope is that one could achieve reduced noise and artifact levels relative to existing approaches, especially in low-dose and non-contrast scans.

Physics MAR alone vs MAR + Restoration

High Clutter 3 – 130kV – Slice 222 FSMAR Window [-500, 700]

This result shows synergy of two algorithms.

High Clutter 3 – 130kV – Slice 222 FSMAR and SPS Window [-500, 700]

Improved Uniformity Improved Resolution¹⁵

Physics Results – Retains Resolution

Medium Clutter 1 – 130kV – Slice 123 Uncorrected Image Window [-1000, 1000]

Medium Clutter 1 – 130kV – Slice 123 Corrected Image Window [-1000, 1000]

NOTE: Retaining resolution can aid in segmentation. Retention in resolution for fine lines and small objects Reduction in streak artifacts

Physics Results – Improves Uniformity

Uncorrected Image Window [250, 600] ROI Variance =

Medium Clutter 1 130kV Slice 202

Corrected Image Window [250, 600] ROI Variance =

Improved circularity, uniformity and volume Uncorrected Image Window [-100, 100] ROI Variance =

LLNLPC 1b 130kV Slice 90

Corrected Image Window [-100, 100] ROI Variance =

Improved circularity

Physics Results – Mitigates Object Splitting

Medium Clutter 1 – 130kV – Slice 38 Uncorrected Image Window [-500, 500]

Uncorrected Image

> Corrected Image

Reduction in streak artifacts splitting objects

Some increase in secondary streak

Physics

Strength and Weaknesses

- Strengths
 - Acts upon sinogram; no need for backprojection and reprojection.
 - This makes it fast.
- Weaknesses
 - Multiple free parameters to optimize.
 - Hard to implement edge preserving priors in sinogram domain.

Physics

Future Research

- Apply to real security scanner data.
- See if metal artifact reduction step can be incorporated directly into the objective function being used.
- Perhaps feed these results into fully iterative reconstruction.

ALERT Reconstruction Initiative TO#3: Sinogram processing Backup slides

Patrick J. La Rivière and Phillip A. Vargas

October 24, 2013

Sinogram restoration imaging model Physics

• We assume the CT scan produces a set of measurements that are realizations of random variables:

Sinogram restoration simplified imaging models

 More practically, we assume the CT scan produces a set of measurements that are realizations of random variables:

Physics

Objective function

• We find the undegraded attenuation line integrals by

$$\hat{\mathbf{I}} = \arg\max_{\mathbf{I}^{3}\mathbf{0}} \left[L(\mathbf{I};\mathbf{y}) - bR(\mathbf{I})\right]$$

- Here L(I;y) is the Poisson likelihood for the adjusted measurements y and R(I) is the roughness penalty.
- To maximize we make use of an update derived by use of the optimization transfer approach (Fessler, 2000) adapting some tricks due to DePierro (1995).

Physics

and

The update

$$l_{j}^{(n+1)} = \left[l_{j}^{(n)} - \frac{n_{j} - b \sum_{k=1}^{N_{y}} c_{kj} W_{k} \left[C \mathbf{I}^{(n)} \right]_{k}}{c_{j}^{(n)} + b v_{j}} \right]_{+}$$

where

$$n_{j} \equiv \sum_{i=1}^{N_{y}} I_{j} b_{ij} \dot{g}_{i} \left(\sum_{j=1}^{N_{y}} I_{j} b_{ij} e^{-f(p_{j}^{(n)})} + s_{i} + \frac{S_{i}^{2}}{G_{i}^{2}} \right) e^{-f(p_{j}^{(n)})} \dot{f}(p_{j}^{(n)})$$

 \dot{g}_i

(x

$$\Big) \circ \frac{y_i}{x} - 1$$

Segmentation performance

Improved segmentation accuracy but at some cost in segmentation precision.

Compactness

Improved detection impact compactness for doped water.