

Advanced Filtered Backprojection

Speaker: Larry Zeng (Weber State University & University of Utah)

Team: Frederic Noo, Larry Zeng, and Dominic Heuscher (University of Utah)

October 24, 2013, 1:40 PM at Northeastern University. Boston, MA * All images shown are provided by Dave Wiley

- We used an extended FBP algorithm to process and reconstruct the airport bag data. Main goal is to reduce the metal artifacts
- Non-iterative; 3D volume reconstruction.
- The algorithm involves selection of some controlling parameters (by hand).

Summary (Effective)

- Metal streaking artifacts are reduced
- Uniformity in the uniform regions is improved
- Better segmentation
- Cannot completely remove metal artifacts
- But still have difficulties to resolve stacked sheets

Metrics and Clouds (1)

20131018 175851 "Zeng" scriptver 0x102 cloudver 0x103

20131018 175851 "Zeng" scriptver 0x102 cloudver 0x103

Metrics and Clouds (2)

UCAIR (Utah Center for Advanced Imaging Research) has a strong research team working on MRI, CT, PET, SPECT, and Ultrasound.

Dominic Heuscher: Research Associate, Radiology, University of Utah Frederic Noo: Professor of Radiology, University of Utah Larry Zeng: Assistant Professor at Weber State University; Adjunct Professor of Radiology, University of Utah

Algorithm Development (1)

- My background: Nuclear Medicine (SPECT, single photon emission computed tomography) image reconstruction (Mentor: Grant Gullberg, since 1989)
- Work on <u>Analytical</u> (computational efficient) and <u>Iterative</u> (able to model noise and other realworld effects) image reconstruction
- Believe that FBP one day can do as well as iterative algorithm in handling many real-world offects

effects

Algorithm Development (2)

 In 2012*, found that a modified FBP algorithm (w/ parameter k) is able to produce the image that is generated with the iterative algorithm using k iterations.

 Later, found that noise weighting can be incorporated in the FBP algorithm, by making the ramp filter spatially variant.

*Zeng GL: A filtered backprojection algorithm with characteristics of the iterative Landweber algorithm. Med. Phys., vol. 39, pp. 603-607, 2012.

Algorithm Development (3)

- In 2013*, made the noise weighted FBP computationally as efficient as the convolution backprojection algorithm (i.e., the filter kernel in the spatial domain was found).
- Later, tried to use <u>noise-weighted</u> FBP and <u>interpolation</u> method on metal data provided by this Homeland Security project. It turned out that they do <u>not</u> work well with metal data.

* Submitted to BMP

Our Extended FBP Algorithm (Procedure)

- Metals need special attention
- Step 1: $x_0 = FBP$ recon
- Step 2: x₁= Metal map {0,1}
- Step 3: $sino_1 = Forward proj.$ metal map
- Step 4: $sino_2 = sino x exp (\alpha x sino_1)$
- Step 5: x_2 = FBP using sino₂
- Step 6: x₃= Bilateral denoising

Our extended FBP Algorithm

- The rays not passing through metals are of high counts. No noise weighting is needed.
- The rays passing through metals are of wrong counts. Noise weighting usually over acts and throw out those rays.
- If there are a lot of metals and we throw out too many rays, the reconstruction looks very bad.
 We ought to handle them more gently — not to throw them out, but to scale them up/down.

Bilateral Algorithm

• A bilateral filter is a non-linear denoising filter; it can preserve the edges.

strategy

- How can a filter know which is noise and which is edge? It doesn't.
- The user specifies a threshold value "T".
 If variation > T, don't filter; If variation < T, filter

Zeng GL, Li Y and Zamyatin A: Iterative total-variation reconstruction vs. weighted filtered-backprojection reconstruction with edge-preserving filtering, Phys. Med. Biol. vol. 58, pp. 3413-3431, 2013.

GRAY LOW

Medium Clutter 1 – 130 kV 231

MAN 0_0002 Med

Mean: 943.914 SD: 104.260 **RMSE: 119.348 PSNR: 30.711** SNR: 9.053 SSIM: 0.991 **RMSE: 104.260 PSNR: 31.885**

Mean: 976.679 SD: 41.613 **RMSE: 48.711 PSNR: 38.495** SNR: 23.471 **SSIM: 0.999 RMSE: 41.613 PSNR: 39.863**

13

Xrec

GRAY Med

Medium Clutter 1 – 130 kV 281

SEG CCL 0_0002

Mean: 1014.026 SD: 146.233 RMSE: 146.728 PSNR: 28.917 SNR: 6.934 SSIM: 0.986 RMSE: 146.234 PSNR: 28.946

Mean: 1064.687 SD: 51.123 RMSE: 80.889 PSNR: 34.089 SNR: 20.826 SSIM: 0.996 RMSE: 51.123 PSNR: 38.075 14

Xrec

Medium Clutter 1 – 130 kV 038

SEG LLC

SEG CCL ALL

Mean: 1058.606 SD: 77.956 RMSE: 79.098 PSNR: 34.284 SNR: 13.580 SSIM: 0.996 RMSE: 77.956 PSNR: 34.410

Mean: 1097.961 SD: 53.745 RMSE: 59.687 PSNR: 36.730 SNR: 20.429 SSIM: 0.998 RMSE: 53.745 PSNR: 37.640

Xrec

Medium Clutter 1 – 130 kV 123

SEG LLC

SEG CCL ALL

Mean: 1058.606 SD: 77.956 RMSE: 79.098 PSNR: 34.284 SNR: 13.580 SSIM: 0.996 RMSE: 77.956 PSNR: 34.410

Mean: 1097.961 SD: 53.745 RMSE: 59.687 PSNR: 36.730 SNR: 20.429 SSIM: 0.998 RMSE: 53.745 PSNR: 37.640 16

Xrec

Medium Clutter 1 – 130 kV 235

SEG CCL 1_0013

SEG CCL ALL

Mean: 1001.533 SD: 74.250 RMSE: 74.252 PSNR: 34.833 SNR: 13.489 SSIM: 0.996 RMSE: 74.250 PSNR: 34.833

Mean: 1034.321 SD: 26.598 RMSE: 41.858 PSNR: 39.812 SNR: 38.887 SSIM: 0.999 RMSE: 26.598 PSNR: 43.750 17

Xrec

Strengths and Weaknesses

- Metal artifacts are reduced
- Noise is reduced
- Big contrast edges are preserved
- Fast (FBP x 3), non-iterative
- Metal artifacts cannot be completely removed
- Unable to resolve stacked sheets
- Can't reduce artifacts and noise for small contrast objects
- Some parameters are picked by hand

Recommendations for future research projects

- Better FBP to handle more real-world effects
- Better metal "noise" model
- Better & systematic way to select for parameters for metal-affected projections
- The current "parameters" are fixed for the entire 3D volume; they can be made adaptive for each special region (slice).
- Automatic selection of parameters

