Structure-Preserving Dual-Energy CT (SPDE)

Limor Martin and W. Clem Karl TO3 Project Review Oct. 24th 2013

SPDE-Pixel Performance: SD vs. Mean of Compton and Photoelectric

SPDE-Pixel Performance: Photoelectric mean vs. Compton mean

 BU

SPDE-Pixel Results

Ying et. al

SPDE-Pixel

Xrec 130KV

WL/WW -250/1500

SPDE-Pixel -Reduced noise and metal artifacts

Compton

Photoelectric

WL/WW

Department of Electrical & Computer Engineering

(High Clutter 1 Slice 220)

SPDE Direct Object-based labeling

130KV Xrec image

Metal corrupts nearby object properties

DE likelihood based labeling

SPDE-Object

- In general, Photo-Compton images not used for segmentation
- Idea: Directly estimate object labels and boundaries from dual-energy data
- Approach: metal class, explicit boundary model, homogeneous object model, downweight data near metal

SPDE-Object Results

(Medium Clutter 1 Slice 281)

Object localization and labeling robust to streaks and presence of metal

(High Clutter 1 Slice 299)

BU

BU Team

Limor Martin, M.S. Ph.D. Candidate Expected graduation: Jan. 2014

W. Clem Karl, Ph.D. Prof. of Electrical and Computer Engineering

Information Sciences and Research (ISS) Group Research, education, and technology transfer in all areas related to the sensing, communication, and processing of information

SPDE Method Description

Data weighting for metal effect mitigation

Markov field for smooth _____ properties

Explicit boundary field to improve localization, reduce artifacts

Pixel-Based

- Form photoelectric and Compton pixel property images
- Nonlinear tomographic inversion

Object-Based

- Direct formation of material-label image from dual-energy images
- Learn appearance models from training data
- Efficient graph-cut framework for optimization

Formulation of SPDE-Pixel

Edge-preserving prior

Mutual object boundary

- Iterative solution via coordinate descent
- Splitting-based, using auxiliary variables

Low weights to rays through metal

Smoothing with mutual object boundary

SPDE-Pixel Results Ying et. al Compton WL/WW 0.15/0.3 Photoelectric WL/WW 5500/9000

SPDE-Pixel

Xrec 130KV

WL/WW -250/1500

Metal is more contained

(Medium Clutter 1 Slice 123)

Department of Electrical & Computer Engineering

12

SPDE-Pixel Results Ying et. al Compton WL/WW 0.15/0.3 Photoelectric WL/WW 5500/9000

SPDE-Pixel

Xrec 130KV

WL/WW -250/1500

Reduced streaks

(Medium Clutter 1 Slice 231)

Department of Electrical & Computer Engineering

13

SPDE-Pixel Results Ying et. al Compton WL/WW 0.15/0.3 Photoelectric WL/WW 5500/9000

SPDE-Pixel

Xrec 130KV

WL/WW -250/1500

Smoothing inside objects while retaining boundaries

(High Clutter 1 Slice 299)

Department of Electrical & Computer Engineering

14

Formulation of SPDE-Object

1) Learn appearance models from dual-energy data 2) Down-weight data close to metal

Formulation of SPDE-Object

3) Object boundary controls smoothing:

- Smooth in areas far from an edge
- Don't smooth across an edge
- 4) Efficient solution using Graph-Cuts

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{n} v_i \left(-\ln p(u_i|l_i) \right) + \lambda \sum_{\{i,j\} \in \mathcal{N}} \mathbbm{1}\{l_i \neq l_j\} \left(\frac{1}{|s_i - s_j|} \right) \\ \text{such that } l_i \in \{1, ..., m\} \end{array}$$

SPDE-Object Results

(High Clutter 1 Slice 362)

(Medium Clutter 1 Slice 295)

Successful direct labeling from dual energy data in presence of metal, shading, streaking

Xrec 130KV

SPDE-Object Results

In presence of artifacts objects may be mislabeled, but localization is still good.

(High Clutter 1 Slice 239)

(LLNLPC 1b Slice 090)

Xrec 130KV

SPDE Strengths and Weaknesses

Strengths:

- Pixel-based method reduces noise and metal artifacts in photoelectric and Compton coefficient images while keeping boundary localization
- Object-based method provides and accurate object segmentation and labeling even in the presence of significant streaks

Weaknesses:

- Parameter tuning is time consuming
- Need accurate tomographic model
- SPDE-Pixel is computationally expensive
- Need sufficient training data

Recommendation for Future Work

- Combine pixel-based and object-based methods in unified framework for improved image quality and accurate material labeling
- Study performance with features different than photoelectric and Compton (e.g. learned features)
- Extend method to more than two energies and other sensing modalities

Acknowledgements

- Collaborators at BU: Dr. Prakash Ishwar and Ahmet Tuysuzoglu.
- Imatron forward projection matrix provided by Pengchong Jin, Purdue.
- Imatron source spectra provided by Dr. Taly Gilat Schmidt, Marquette.

