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Ying et. al* 

SPDE-Pixel Performance: SD vs. Mean of Compton and Photoelectric 

* Z. Ying, R. Naidu and C. Crawford, �Dual Energy Computed Tomography for Explosive 

Detection,� Journal of X-ray Science and Technology 14 (2006), pp 235-256. 

SPDE-Pixel - lower SD, better mean separation 
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SPDE-Pixel Performance: Photoelectric mean vs. Compton mean 

SPDE results in tighter clusters! 

SPDE-Pixel Ying et. al 

SPDE-Pixel – tighter material clusters 
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SPDE-Pixel Results 
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SPDE Direct Object-based labeling 
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DE likelihood 

based labeling SPDE-Object 130KV Xrec image 

Metal 

corrupts 

nearby 

object 

properties 

 In general, Photo-Compton images not used for 

segmentation 

 Idea: Directly estimate object labels and boundaries from 

dual-energy data 

 Approach: metal class, explicit boundary model, 

homogeneous object model, downweight data near metal 
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SPDE-Object Results 
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(High Clutter 1 Slice 299) (Medium Clutter 1 Slice 281) 

Object 

localization and 
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to streaks and 

presence of 
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BU Team 

 Information Sciences and Research (ISS) Group 
Research, education, and technology transfer in all areas related 

to the sensing, communication, and processing of information 
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SPDE Method Description 

 Form photoelectric and Compton pixel 

property images 

 Nonlinear tomographic inversion 
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 Direct formation of material-label image 

from dual-energy images 

 Learn appearance models from training 

data  

 Efficient graph-cut framework for 

optimization 

Pixel-Based Object-Based 

Explicit 

boundary field 

to improve 

localization, 

reduce artifacts 

Data weighting 

for metal effect 

mitigation 

Markov field for 

smooth 

properties 
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Formulation of SPDE-Pixel 
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 Edge-preserving prior 

 Iterative solution via coordinate descent 

 Splitting-based, using auxiliary variables 

Data 

Prior 

Observed 130 and 95 data sinograms Photoelectric and  

Compton sinograms 

Photoelectric and  

Compton images 

Mutual object 

boundary 
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Low weights to rays through metal 

10 

130KV sinogram 

Ray going 

through metal 

Corresponding data weights 

Data-weighting function 
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Smoothing with mutual object boundary 
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Object boundary field Compton image 

Smooth inside objects while retaining object boundaries 

Photoelectric image 

Iterate 
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SPDE-Pixel Results 
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(Medium Clutter 1 Slice 123) 

Metal is more 

contained 
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SPDE-Pixel Results 
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(Medium Clutter 1 Slice 231) 

Reduced streaks 
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SPDE-Pixel Results 
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(High Clutter 1 Slice 299) 

Smoothing inside 

objects while 

retaining boundaries 

SPDE-Pixel Ying et. al 
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Formulation of SPDE-Object   
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2) Down-weight data 

close to metal 
1) Learn appearance  models 

from dual-energy data 



Boston University Slideshow Title Goes Here 

Formulation of SPDE-Object   
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Boundary-field 

3) Object boundary controls smoothing: 

 Smooth in areas far from an edge 

 Don’t smooth across an edge 

4) Efficient solution using Graph-Cuts 
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SPDE-Object Results 
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(High Clutter 1 Slice 362) (Medium Clutter 1 Slice 295) 

Successful direct 

labeling from dual 

energy data in 

presence of metal, 

shading, streaking  
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SPDE-Object Results 
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(High Clutter 1 Slice 239) (LLNLPC 1b Slice 090) 

In presence of 

artifacts objects 

may be mislabeled, 

but localization is 

still good. 
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SPDE Strengths and Weaknesses 

Strengths: 

 Pixel-based method reduces noise and metal artifacts in 

photoelectric and Compton coefficient images while keeping 

boundary localization 

 Object-based method provides and accurate object segmentation 

and labeling even in the presence of significant streaks 

 

Weaknesses: 

 Parameter tuning is time consuming  

 Need accurate tomographic model 

 SPDE-Pixel is computationally expensive 

 Need sufficient training data 
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Recommendation for Future Work 

 Combine pixel-based and object-based methods in 

unified framework for improved image quality and 

accurate material labeling 

 Study performance with features different than 

photoelectric and Compton (e.g. learned features) 

 Extend method to more than two energies and other 

sensing modalities 
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