Stabilized Reconstruction and Materials Identification for Dualenergy CT

Brian H. Tracey and Eric L. Miller Tufts University October 24, 2013

Materials Characterization "Clouds" Based on Stratovan Manual Segmentation

Tufts

Example Comparison to YNC Medium Clutter 1, Slice 231

YNC method

Patch-regularized ADMM

Example Comparison to "Legacy" Medium Clutter 1, Slice 231 – YNC + Inpainting

"Legacy" method

Patch-regularized ADMM

Research Team: Tufts LaISR Group

•Tufts Lab for Imaging Science Research (LaISR)

- Inverse problems and image processing
- Active collaboration with industry (AS&E, BBN, Schlumberger, consulting activities)
- This project builds on past ALERT-funded work: –multi-energy CT reconstruction, Semerci and Miller –patch-based denoising, Tracey

Problem Description

- We describe data using **physics-based** coefficients Compton scatter and photoelectric effect (PE) images Compton scatter photoelectric effect (PE) $\mu(x,y,E)=f_{KN}(E)a_c(x,y)+f_p(E)a_p(x,y)$
- Dual scans -> two material parameters -> material ID

<u>Challenge</u>: Physics dictate that sensitivity to PE is low; accurately estimating PE is difficult (recovery is unstable)

Legacy (YNC) dual-energy approach:

- Decompose data into Compton and PE sinograms, then FBP both
- Use a **iterative, polyenergetic** solution, then destreak PE
- Does **not** work in image space, use expected Compton/PE shape similarity, or use knowledge of materials (beyond values >=0)

Overall Processing Concept

Patch-based Regularization ("Idea 1")

Goal: Use stable image to reduce effects of noise during reconstruction

Why Consider Patch-based Methods?

- Previous Tufts work* sought high correlation between edges in Compton and PE
 - Simulations show patch-based approach may perform better
- Patch methods are convex; solvers (ADMM) allow parallel computation
 - Not possible with edge correlation
- Better texture preservation than penalties like Total Variation

Suitcase phantom, 60 dB SNR

mm

Semerici and Miller, IEEE Trans Image Proc, 2012

Simultaneous Segmentation / Reconstruction ("Idea 2")

Model: homogenous material of interest on a varying background

$$\begin{split} c(x,y) &= \chi(x,y) c_f + \left[1-\chi(x,y)\right] c_b(x,y) \\ p(x,y) &= \chi(x,y) p_f + \left[1-\chi(x,y)\right] p_b(x,y) \end{split}$$

where the χ is the zero-level set of a set of Gaussian "blobs"

Processing: iterative recon, updating material shape and properties

Advantages:

- A few Gaussians can represent complex shapes – easier recon
- Foreground values can be constrained by imperfect prior knowledge
- Focus processing on materials of interest

Tufts

"Legacy" Dual Energy Method Medium Clutter 1, Slice 038

YNC

YNC + inpainting ("Legacy")

- Ying, Naidu and Crawford 2006 describes sinogram decomposition method
- •We implemented the YNC solution method and destreaking, but not calibration
- Non-negativity constraints lead to many zeros in sinogram, increasing noise
- We use simple sinogram inpainting/interpolation to control this; result is taken as "Legacy"

Compton

Photoelectric

New method vs "Legacy" Medium Clutter 1, Slice 038

Legacy

Regularized ADMM

Photoelectric

Compton

- PE shows greatest change
- Sharp edges are preserved
- Energy from streak artifacts is 'smeared' into background
- <u>Slight</u> benefit if apply patch-based to Compton, using FBP result as reference (faster solution)

Example Region-of-Interest Analysis using Active Contours

- Dual-energy iterative Compton and PE images form "background" A)
- Region of interest (ROI) is reprocessed, returning extracted "foreground" object B)
- In segmented region, Compton /PE "cloud" is replaced by single value C)

Example Region-of-Interest Analysis using Level Sets

- Dual-energy iterative Compton and PE images form "background" A)
- Region of interest (ROI) is reprocessed, returning extracted "foreground" object B)
- In segmented region, Compton /PE "cloud" is replaced by single value C)
- In bead region, textured object (D) is poorly captured by homogenous model (E)

Approach Allows Higher Spatial Resolution near Object of Interest

- Here, 3x higher spatial resolution used to image the foreground (object of interest)
- Allows us to apply computation where it is most beneficial
- Simulation results (for data, we created project-standard 512x512 images)

Photoelectric

Legacy

Patch-regularized ADMM

- Our main focus has been on stabilizing PE
- No metal artifact reduction implemented – but effects can be large

Possible solutions:

- a) Include metal artifact reduction steps in processing
- b) Consider level-sets for localizing metal

Legacy

Patch-regularized ADMM

- Our main focus has been on stabilizing PE
- No metal artifact reduction implemented – but effects can be large

Possible solutions:

- a) Include metal artifact reduction steps in processing
- b) Consider level-sets for localizing metal

Patch-based regularization methods

- Much more stable reconstruction of PE image, reflected in tighter clouds for parameter estimates
- Formulated using ADMM approach – so parallel implementation is possible

- Noise in PE image is "smeared", increasing background levels
- Regularization scheme is less effective for Compton than for PE
- Metal artifacts challenging

Simultaneous segmentation/ reconstruction

- Allows use of prior knowledge about materials
- Reduces (eliminates!) scatter in material properties inside object
- <u>Current</u> method limited to homogenous objects
- Depends on good initialization
- Computation grows with ROI area

Recommendations for Future Work

Correct for metal!

• Patch-based regularization:

- Apply to limited-view scenarios (see final report)
- Apply to multi-energy data
- Apply to sinogram pre-processing methods, such as YNC
- Exploit convexity: explore speed gains from ADMM-type algorithms

• Level-set methods:

- Move beyond homogeneous objects to *texture-based* segmentation
- Explore convex formulations that would reduce sensitivity to initialization and allow reprocessing of entire image, not just ROI

Subsampled data – HC1, Slice 70

Photoelectric

Iterative, no reg.

Regularlized

Low/Medium "Clouds vs Method

Legacy

Patch-regularized ADMM

Compton Photoelectric

- Our main focus has been on stabilizing PE
- No metal artifact reduction implemented – but effects can be large

Possible solutions:

- a) Include metal artifact reduction steps in processing
- b) Consider level-sets for localizing metal

New method vs "Legacy" Medium Clutter 1, Slice 038

Legacy

Compton

Regularized ADMM

Photoelectric

- PE shows greatest change
- Sharp edges are preserved
- Energy from streak artifacts is 'smeared' into background
- <u>Slight</u> benefit if apply patch-based to Compton, using FBP result as reference (faster solution)

Legacy

Patch-regularized ADMM

• Impact on water bottle

Photoelectric

Legacy

Patch-regularized ADMM High TV on Compton

- Impact on water bottle
- Can **partially** control Compton artifacts through regularization - here, Total Variation
- However, need for additional metal artifact handling

Compton

Example Comparison to YNC Medium Clutter 1, Slice 231

YNC method

Photoelectric

Patch-regularized ADMM

Legacy

Patch-regularized ADMM very high patch

 Can partially control Compton artifacts through regularization

 Use FBP image to stabilize Compton (patch-based)
 Use Total Variation

Photoelectric

 However, need for additional metal artifact handling

