

T03 Results Assessment

David F. Wiley Deb Ghosh Stratovan Corporation

Our Task

Medium_Clutter2 - Slice.175

Xrec - Baseline

Researcher A

Researcher B

Which is *better*? ... and why? (Goal is NOT to rank researchers)

Conclusions – Accuracy Results

	Water				Saline				
	σ	Edge	CCL	Tum	σ	Edge	CCL	Tum	
Purdue / Notre Dame									
Harvard									
Tennessee									
UCSD									
Chicago									
Utah									
Boston									
Tufts									
Better	Insignificant Change						Worse		

We are not evaluating rubber sheets due to object philosophy problem.

Conclusions – Compactness Results

	Water				Saline			
	σ	Edge	CCL	Tum	σ	Edge	CCL	Tum
Purdue / Notre Dame								
Harvard								
Tennessee								
UCSD								
Chicago								
Utah								
Boston								
Tufts								
Better	Insignificant Change					Worse		

We are not evaluating rubber sheets due to object philosophy problem.

T03 Final Presentation

Purdue/Notre Dame – Doped Water (Better)XRecPurdue/Notre Dame

High_Clutter1 Slice.239

T03 Final Presentation

Purdue/Notre Dame – Doped Water (Better)XRecPurdue/Notre Dame

11/4/2013

T03 Final Presentation

Tumbler

Harvard – Doped Water (Better) XRec Harvard

High_Clutter1 Slice.239

T03 Final Presentation

STRATOVAN

Harvard – Doped Water (Better) XRec Harvard

High_Clutter1 Slice.239

CCL

Gregor – Doped Water (Better) XRec Gregor

High_Clutter1 Slice.239

T03 Final Presentation

STRATOVAN

Gregor – Doped Water (Better) XRec Gregor

High_Clutter1 Slice.239

CCL

UCSD – Doped Water (Better) XRec UCSD

High_Clutter1 Slice.239

UCSD – Doped Water (Better) XRec

High_Clutter1 Slice.239

CCL

11/4/2013

Chicago – Doped Water (Better) XRec Chicago

High_Clutter1 Slice.239

T03 Final Presentation

Chicago – Doped Water (Better) XRec Chicago

High_Clutter1 Slice.239

CCL

11/4/2013

15

Utah – Water (Better) XRec Utah

Medium_Clutter1 Slice.231

16

Utah – Water (Better) XRec Utah

Tumbler

STRATOVAN

Impact Relationships

- Improved stddev accuracy seems to reduce edge contrast accuracy
 - algorithms should be sensitive to object edges as well and try to increase contrast
- Reduced edge contrast accuracy did not outweigh gain obtained from improved stddev accuracy
 - segmentations were better or remained the same

Impact Relationships

- Improved stddev accuracy impacted water/saline compactness differently. Why?
 - Water: mean spread out, wider variation
 - Saline: mean compacted, less variation
- Improved stddev compactness correlates to more compact/consistent edge contrast
- Improved edge contrast compactness correlates to improved segmentation consistency

Recommendations for the Future

- Concentrate on reducing stddev (within homogenous objects) while increasing edge contrast
 - This improves segmentation and ultimately feature quality.
- A single bad pixel on an object boundary can cause a segmentation to leak
 - Try to improve the entire object boundary
- Reduced stddev may increase mean spread which can increase cloud size in ATR
 - Look at outliers to find out what's happening.
- Stacked sheets are an object philosophy problem NOT a reconstruction problem

The End

(but there's more slides if you have questions)

T03 Final Presentation

20

Analysis Process - 40GB of Data

T03 Final Presentation

Improvement Over Xrec

We should have used $\sqrt{e_1^2 + e_2^2}$ instead of e_1 . We may do this for the final report.

T03 Final Presentation

22

Cloud Results - Mean

Cloud Results – Mean vs. Std

Cloud Results – All Objects

Cloud Results – Mean vs. CCL

What did we measure? – Objects!

Goal is to accurately segment first then compute object characteristics.

Assumption: Homogenous objects should result in a single peak (i.e., stddev = 0) Implication: Wider peaks make segmentation harder and increase cluster size in detection parameter space

Process: Use the same segmentation mask for all researchers

What did we measure? – Segmentations!

Water

Sheet

Recovery fraction:

$$R_A = \frac{Pix(A) - Pix(X)}{Pix(X)}$$

Where:

- A is either the CCL of Tumbler segmentation results.
- X is the ground truth segmentation.
- Pix() is simply the number of pixels in the segmentation mask.

An R-value of zero is ideal.

A **negative** value indicates a segmentation **smaller** than the ground truth.

A **positive** value indicates a segmentation **larger** than the ground truth.

11/4/2013

 $Medium_Clutter 4.242.fits.SEG_CCL_0_0013.tif$

Medium_Clutter4.242.fits.SEG_CCL_ALL.tif

11/4/2013

Left-image shows the CCL segmentation (red pixels) from the seed (white dot). In this case, the segmentation only obtains a small fragment of the rubber sheet due to artifacts. Right-images shows the complete CCL segmentation, for reference only.

Tumbler Segmentation

 $Medium_Clutter 4.242.fits.SEG_DEC_0_0013.tif$

Shows Tumbler segmentation results in red pixels. Tumbler uses the same seed point that is used in CCL. In this case, the segmentation gets the lower half of the rubber sheet, but is split by an artifact from the upper portion.

11/4/2013

What did we measure? – Boundaries!

Assumption: Objects should have *crisp* boundaries to enable segmentation
Implication: Low-contrast, poorly defined boundaries, makes segmentation extremely difficult. *Abs(OuterMean-InnerMean)* relates to *"boundary contrast"* Process: Measure two thin bands of pixels at the object boundary

T03 Final Presentation

Medium_Clutter4.134.fits.MAN_1_0013_HIST_BOUNDARY.tif

Segmentation seeks to identify the boundary between red and blue regions (orange dotted line). **Differentiation between the red and blue histogram peaks directly correlates to impact on segmentation.** Good differentiation yields good segmentation. Poor differentiation yields poor segmentations.

T03 Final Presentation

32

Boundary Histogram - Poor

3072

Ground truth segmentation

11/4/2013

No differentiation between peaks. This indicates poor boundary contrast and results in poor segmentations.

Note: this particular situation is due to many contributing factors, not just reconstruction.

Metrics

Medium_Clutter4.242.fits.METRICS_MAN_0_0013.txt

This file records the metrics output for the image slice. These metrics are computed using the cookie-cutter segmentation. We use the top two metrics (Mean and SD) and the bottom two (OuterMean and InnerMean) in the cloud graphs.

The difference between OuterMean and InnerMean indicates boundary contrast.

Cloud Comparison

36

Cloud Interpretation

- **Compactness (all clouds)**: this is estimated by the PCA ellipse. Smaller is better. Better compactness improves ATR.
- ATR Improvement (Mean vs. StdDev clouds): you want to see a decrease in standard deviation.
- Segmentation Improvement (Mean vs. Recovery clouds): you want to see object recovery clustered around the vertical 0.
- Segmentation Improvement (Inner/Outer clouds): you want to see good (red/blue) peak separation in boundary histograms.

Improvement Interpretation

Improvement relative to standard deviation within an object. Correlates to ATR and segmentation quality.

Improvement relative to boundary contrast. Correlates to segmentation quality.

11/4/2013

Improvement relative to CCL segmentation. Implies impact on *simple* segmentation algorithms.

Improvement relative to Tumbler segmentation. Implies impact on *sophisticated* segmentation algorithms.

Improvement Interpretation

The Results...

In no particular order ... same as on FTP site with dual energy groups last.

Purdue

Water: Slightly better standard deviation though less consistent. Slightly reduced and less consistent boundary contrast. Better segmentation accuracy and precision all around.

Saline: Better standard deviation and more consistent. Slightly better boundary contrast. Better segmentation accuracy for CCL. Better segmentation precision.

Sheet: Slightly better standard deviation. No change in boundary contrast. Slightly worse segmentations (stacked sheets problematic).

Bouman\genhuber_mixture_X1\20131019_143014_Cloud_Results

Harvard

Water: Better standard deviation. Insignificant change to boundary contrast. Slightly better segmentation precision. Slightly better Tumbler accuracy.

Saline: Better standard deviation and more consistent. Reduced boundary contrast but more consistent. No change in segmentation accuracy. Better segmentation precision.

Sheet: Better standard deviation. No change in boundary contrast. Little change in segmentations (stacked sheets problematic).

Do\FITS\SparseRecon\20131018_182230_Cloud_Results

Jens Gregor (Tennessee)

Gregor\Gregor_CGW1B5\20131018_182252_Cloud_Results

Water: Better standard deviation. Reduced boundary contrast but more consistent. Reduced CCL accuracy but more consistent. Better Tumbler accuracy and precision.

Saline: Better standard deviation and more consistent. Reduced boundary contrast but more consistent. Reduced CCL accuracy but more consistent. Better Tumbler precision.

Sheet: Better standard deviation and a bit more consistent. Reduced boundary contrast but more consistent. Worse CCL and Tumbler segmentations (stacked sheets problematic).

UCSD

Water: Better standard deviation. Slightly reduced boundary contrast. Better segmentation accuracy. No change in segmentation precision.

Saline: Too few objects.

Sheet: Better standard deviation and more consistent. Insignificant change in boundary contrast. Worse segmentation accuracy (stacked sheets problematic).

Karimi\mar\20131018_182255_Cloud_Results

Chicago

Water: No change in standard deviation but less consistent. No change in boundary contrast but less consistent. Better CCL accuracy. Less segmentation precision.

Saline: Standard deviation is more consistent. Insignificant change in boundary contrast. Better CCL accuracy. Slightly worse Tumbler accuracy. Less segmentation precision.

Sheet: No change in standard deviation. Insignificant change in boundary contrast. Slightly better segmentation accuracy. Worse segmentation precision (stacked sheets problematic).

LaRiviere2\C111\20131018 175843 Cloud Results

Utah

Water: Better standard deviation but less consistent. Reduced boundary contrast but more consistent. Better segmentation accuracy. No change in segmentation precision.

Saline: Too few objects.

Sheet: (No stacked sheets.) Better standard deviation. Improved boundary contrast consistency. Better CCL accuracy. Little change in Tumbler accuracy. Better segmentation precision (though, no stacked sheets).

Zeng\ver4\20131018_175851_Cloud_Results

Purdue – Doped Water (Better) Purdue XRec

High_Clutter1 Slice.239

Harvard – Doped Water (Better) Harvard XRec

High_Clutter1 Slice.239

T03 Final Presentation

47

Gregor – Doped Water (Better) KRec

High_Clutter1 Slice.239

T03 Final Presentation

48

UCSD – Doped Water (Better) UCSD XRec

High_Clutter1 Slice.239

T03 Final Presentation

Chicago – Doped Water (Better) Chicago XRec

High_Clutter1 Slice.239

51

Utah – Water (Better) Utah XRec

Medium_Clutter1 Slice.231

Purdue - Rubber Sheet (Worse) Purdue XRec

Everyone had trouble with stacked sheets!

High_Clutter1 Slice.239

T03 Final Presentation

Purdue – Rubber Sheet (Worse) Purdue XRec

High_Clutter1 Slice.239

СС

11/4/2013

Stacked Rubber Sheets

- All groups had trouble with stack sheets
- We won't show stacked sheets results for any more groups since they are all about the same
- Stacked sheets are a resolution problem, not necessarily a recon problem
- All groups did better on a single sheet

Boston – LAC – Doped Water Boston YNC

High_Clutter1 Slice.239

Boston – LAC – Doped Water Boston YNC

High_Clutter1 Slice.239

Tufts – Compton – Doped Water Tufts YNC

High_Clutter1 Slice.239

Tufts – Compton – Doped Water Tufts YNC

High_Clutter1 Slice.239

11/4/2013

59

Tufts – Photoelectric – Doped Water Tufts YNC

High_Clutter1 Slice.239

60

Tufts – Photoelectric – Doped Water Tufts YNC

High_Clutter1 Slice.239

Everyone made progress!

T03 Final Presentation

11/4/2013

61