Discussion & Next Steps

Carl Crawford, Csuptwo
Clem Karl, Boston University
Harry Martz, Lawrence Livermore National Laboratory

Executive Summary

- Project has achieved its goals
 - Developed new reconstruction methods for single- and dual-energy
 CT-based explosive detection equipment
 - Developed methods (clouds) to assess improved imagery using surrogates for tuned end-to-end ATRs
 - Developed simulation tools and standardized phantoms that will allow comparisons of algorithms and faster/cheaper development of new products
 - Created a public domain database of raw and scanner meta data so that work on reconstruction continues after this project ends
 - Trained new people to work in the explosive detection field

How Good Did They Do?

- Clouds generally shrunk in area and objects more clustered
- Should reduce regions in classifiers leading to
 - Increased PD or decreased PFA
 - Room to lower minimum mass
- Still a conjecture
- Useful to have extensible ATR and take TSL Certification test

Common Strengths

- Understood problems caused by CT artifacts such as finite resolution and streaks, leading to merging and splitting of objects
- Helped to develop metrics based on image quality and segmentation
- Potential for future improvements

Opportunities for Improvements

- Researchers have done excellent work.
- Domain experts applaud all their efforts
- Next slides discuss opportunities for improvements
 - Should not be considered to be criticism of their work
- We bear some responsibility for weaknesses
 - Corollary of Heisenberg's Uncertainty Principle is that we could not observe without affecting

How Far Did They Go?

- Groups were told to mainly concentrate on streak artifact reduction (mainly caused by metal)
- Other artifacts less explicitly addressed
 - Low frequency shading
 - Blurring
- Causes
 - Beam hardening, scatter
 - Finite source/detector apertures

Areas of Concern

- Artifacts reduced with image smoothing could lead to texture being modified
- Only showed that PD/PFA improvements may be possible
- Some algorithm paths recreated aspects of known methods

Algorithmic Futures

- New data
 - Cone beam CT
 - Multi-bin projections
- More time to work on algorithms
- Combine methods
 - Example: iterative + sinogram processing
- Improve metrics
 - Correlate with PD/PF (difficult)

Researchers

- Publish, patent, present
- Seek additional funding from
 - Vendors, DHS, TSA, ALERT
- Revise algorithms
- Address computational expense

Program Management

- Complete final report
- Database and problem statements into public domain
- Facilitate community and networking

Lesson Learned

- Database creation
 - More specification and documentation
 - Different object sets (e.g. single sheets)
 - More and earlier validation
 - Frustratingly hard to get this entirely, perfectly right.
 Much time needs to be given to boring things (like record keeping)
- Research teams
 - Fewer
 - More work before end of project

Recommendations to DHS/TSA

- Fund additional research by researchers, national labs and vendors
- Encourage vendors to engage third parties
- Choose more representative unclassified problems
 - AIT, AT2, cargo

Recommendations to National Labs

- Execute reconstruction algorithms on scans of threats and stream of commerce data
 - Use DHS image database at LLNL
- Predict improvement on PD/PFA

Recommendations to Vendors

- Compare proprietary reconstruction algorithms to researcher algorithms
- Hire researchers, students and their colleagues
- Contribute to specification of more unclassified problems! Share your ideas for what is valuable and what is not.

Thank you!

- Thank you to
 - DHS
 - Researchers
 - Vendors
 - Meeting participants

The Structure of Scientific Revolutions Thomas Kuhn

Kuhn has made several notable claims concerning the progress of scientific knowledge: that scientific fields undergo periodic "paradigm shifts" rather than solely progressing in a linear and continuous way; that these paradigm shifts open up new approaches to understanding that scientists would never have considered valid before; and that the notion of scientific truth, at any given moment, cannot be established solely by objective criteria but is defined by a consensus of a scientific community. Competing paradigms are frequently incommensurable; that is, they are competing accounts of reality which cannot be coherently reconciled. Thus, our comprehension of science can never rely on full "objectivity"; we must account for subjective perspectives as well.

Look forward to paradigm shifts in the near future