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PRISM: Person Re-Identification via
Structured Matching

Ziming Zhang, and Venkatesh Saligrama, Member, IEEE

Abstract—Person re-identification (re-id), an emerging problem in visual surveillance, deals with maintaining entities of
individuals whilst they traverse various locations surveilled by a camera network. From a visual perspective re-id is challenging
due to significant changes in visual appearance of individuals in cameras with different pose, illumination and calibration.
Globally the challenge arises from the need to maintain structurally consistent matches among all the individual entities across
different camera views. We propose PRISM, a structured matching method to jointly account for these challenges. We view
the global problem as a weighted graph matching problem and estimate edge weights by learning to predict them based
on the co-occurrences of visual patterns in the training examples. These co-occurrence based scores in turn account for
appearance changes by inferring likely and unlikely visual co-occurrences appearing in training instances. We implement PRISM
on single shot and multi-shot scenarios. PRISM uniformly outperforms state-of-the-art in terms of matching rate while being
computationally efficient.

Index Terms—Person Re-identification, Structured Matching, Visual Co-occurrences, Single/Multi-Shot
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1 INTRODUCTION

M Any surveillance systems require autonomous long-
term behavior monitoring of pedestrians within a

large camera network. One of the key issues in this task is
person re-identification (re-id), which deals with as to how
to maintain entities of individuals as they traverse through
diverse locations that are surveilled by different cameras
with non-overlapping camera views. As in the literature, in
this paper we focus on finding entity matches between two
cameras.

Re-id presents several challenges. From a vision perspec-
tive, camera views are non-overlapping and so conventional
tracking methods are not helpful. Variation in appearance
between the two camera views is so significant — due to
the arbitrary change in view angles, poses, illumination and
calibration — that features seen in one camera are often
missing in the other. Low resolution of images for re-id
makes biometrics based approaches often unreliable [1].
Globally, the issue is that only a subset of individuals
identified in one camera (location) may appear in the other.

We propose, PRISM, a structured matching method for
re-id. PRISM is a weighted bipartite matching method
that simultaneously identifies potential matches between
individuals viewed in two different cameras. Fig. 1(a)
illustrates re-id with two camera views, where 4 images
labeled by green form the so-called probe set, and 4 entities
labeled by red form the so-called gallery set. Graph match-
ing requires edge weights, which correspond to similarity
between entities viewed from two different cameras.
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(a) (b)

Fig. 1. (a) Illustration of re-id, where color red and green label the
images from two different camera views, and arrows indicate entity
matches. (b) Illustration of the weighted bipartite graph matching
problem for (a), where each row denotes a camera view, each node
denotes a person entity, different colors denote different entities, and
the edges are weighted by 0 or 1, indicating missing matches or
same entities. Each entity per view can be associated with single or
multiple images.

We learn to estimate edge weights from training instances
of manually labeled image pairs. We formulate the problem
as an instance of structured learning [2] problem. While
structured learning has been employed for matching text
documents, re-id poses new challenges. Edge weights are
obtained as a weighted linear combination of basis func-
tions. For texts these basis functions encode shared or
related words or patterns (which are assumed to be known
a priori) between text documents. The weights for the
basis functions are learned from training data. In this way
during testing edge weights are scored based on a weighted
combination of related words. In contrast, visual words (i.e.
vector representations of appearance information, similar to
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Fig. 2. Illustration of visual word co-occurrence in positive image pairs (i.e. two images from different camera views per column belong to
a same person) and negative image pairs (i.e. two images from different camera views per column belong to different persons). For positive
(or negative) pairs, in each row the enclosed regions are assigned the same visual word.

the words in texts) suffer from well known visual ambiguity
and spatial distortion. This issue is further compounded in
the re-id problem where visual words exhibit significant
variations in appearance due to changes in pose, illumina-
tion, etc.

To handle the visual ambiguity and spatial distortion,
we propose new basis functions based on co-occurrence
of different visual words. We then estimate weights for
different co-occurrences from their statistics in training
data. While co-occurrence based statistics has been used
in some other works [3], [4], [5], ours has a different
purpose. We are largely motivated by the observation that
the co-occurrence patterns of visual codewords behave
similarly for images from different views. In other words,
the transformation of target appearances can be statistically
inferred through these co-occurrence patterns. As seen
in Fig. 2, we observe that some regions are distributed
similarly in images from different views and robustly in
the presence of large cross-view variations. These regions
provide important discriminant co-occurrence patterns for
matching image pairs. For instance, statistically speaking,
the first column of positive image pairs shows that “white”
color in Camera 1 can change to “light blue” in Camera
2. However, “light blue” in Camera 1 can hardly change
to “black” in Camera 2, as shown in the first column of
negative image pairs.

In our previous work [6], we proposed a novel vi-
sual word co-occurrence model to capture such important
patterns between images. We first encode images with a
sufficiently large codebook to account for different visual
patterns. Pixels are then matched into codewords or visual
words, and the resulting spatial distribution for each code-
word is embedded to a kernel space through kernel mean
embedding [7] with latent-variable conditional densities
[8] as kernels. The fact that we incorporate the spatial
distribution of codewords into appearance models provides
us with locality sensitive co-occurrence measures. Our

approach can be also interpreted as a means to transfer
the information (e.g. pose, illumination, and appearance)
in image pairs to a common latent space for meaningful
comparison.

In this perspective appearance change corresponds to
transformation of a visual word viewed in one camera into
another visual word in another camera. Particularly, our
method does not assume any smooth appearance transfor-
mation across different cameras. Instead, our method learns
the visual word co-occurrence pattens statistically in differ-
ent camera views to predict the identities of persons. The
structured learning problem in our method is to determine
important co-occurrences while being robust to noisy co-
occurrences.

In summary, our main contributions of this paper are:
• We propose a new structured matching method to

simultaneously identify matches between two cameras
that can deal with both single-shot and multi-shot
scenarios in a unified framework;

• We account for significant change in appearance de-
sign of new basis functions, which are based on visual
word co-occurrences [6];

• We outperform the state-of-the-art significantly on
several benchmark datasets, with good computational
efficiency in testing.

1.1 Related Work
While re-id has received significant interest [1], [9], [10],
much of this effort can be viewed as methods that seek
to classify each probe image into one of gallery images.
Broadly re-id literature can be categorized into two themes
with one focusing on cleverly designing local features [6],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25] and the other focusing on metric
learning [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38]. Typically local feature design aims
to find a re-id specific representation based on the some
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properties among the data in re-id, e.g. symmetry and
centralization of pedestrians in images [13], color corre-
spondences in images from different cameras [24], [23],
spatial-temporal information in re-id videos/sequences [12],
[14], discriminative image representation [6], [11], [17],
viewpoint invariance prior [25]. Unlike these approaches
that attempt to match local features our method attempts
to learn changes in appearance or features to account for
visual ambiguity and spatial distortion. On the other hand,
metric learning aims to learn a better similarity measure
using, for instance, transfer learning [29], dictionary learn-
ing [30], distance learning/comparison [31], [33], [34],
similarity learning [35], dimension reduction [36], template
matching [37], active learning [38]. In contrast to metric
learning approaches that attempt to find a metric such that
features from positively associated pairs are close in dis-
tance our learning algorithm learns similarity functions for
imputing similarity between features that naturally undergo
appearance changes.

Re-ID can also be organized based on so called single-
shot or multi-shot scenarios. For single-shot learning, each
entity is associated with only one single image, and re-
id is performed based on every single image pair. In the
literature, most of the methods are proposed under this
scenario. For instance, Zhao et al. [39] proposed learning
good discriminative mid-level filters for describing images.
Yang et al. [23] proposed a saliency color based image
descriptor and employed metric learning with these de-
scriptors for re-id. For multi-shot learning, each entity is
associated with at least one image, and re-id is performed
based on multiple image pairs. How to utilize the redundant
information in multiple images is the key difference from
single-shot learning. Wu et al. [40] proposed a locality-
constrained collaboratively regularized nearest point model
to select images for generating decision boundaries between
different entities, which are represented as sets of points in
the feature space. Bazzani et al. [41] propose a new image
representation by focusing on the overall chromatic content
and the presence of recurrent local patches.

Our work in contrast deals with these different scenarios
within one framework. In addition we allow for no matches
for some entities and can handle cases where the numbers
of entities in both probe and gallery sets are different.
Meanwhile, our basis function can handle both single-
shot and multi-shot learning directly while accounting for
appearance changes.

While special cases of our method bears similarity to
Locally-adaptive Decision Functions (LADF) described in
[42], they are fundamentally different. LADF proposes a
second-order (i.e. quadratic) decision function based on
metric learning. In contrast we compute similarities be-
tween entities and do not need to impose positive semidef-
inite conditions during training. Our method is also related
to [43] where an integer optimization method was proposed
to enforce network consistency in re-id during testing, i.e.
maintaining consistency in re-id results across the network.
For instance, a person A from camera view 1 matches a
person B from view 2, and A also matches a person C

from view 3, then based on consistency B should match C
as well. This network consistency helps improve the cam-
era pairwise re-id performance between all the individual
camera pairs. In contrast, graph-structure is integral to both
training and testing in our proposed approach. We learn-to-
estimate bipartite graph structures during testing by pruning
the feasible solution space based on our a priori knowledge
on correct matching structures. Recently, Paisitkriangkrai et
al. [44] and Liu et al. [45] proposed utilizing structured
learning to integrate the metric/color model ensembles,
where structured learning is taken as a means to enhance the
re-id performance of each individual model. In contrast, we
consider structured learning as a way to learn the classifier,
working with our own features for re-id.

To summarize our contributions, our method learns to
assign weights to pairs of instances using globally known
feasible assignments in training data. Unlike text data
or other conventional approaches our weights incorporate
appearance changes and spatial distortion. We express
the weights as a linear combination of basis functions,
which are the set of all feasible appearance changes (co-
occurrences). Our decision function is a weighting function
that weights different co-occurrences. During training, our
structural constraints induce higher scores on ground-truth
assignments over other feasible assignments. During test-
ing, we enforce a globally feasible assignment based on our
learned co-occurrence weights.

Very recently, open-world re-id [46], [47], [48] has been
introduced, where persons in each camera may be only
partially overlapping and the number of cameras, spatial
size of the environment, and number of people may be
unknown and at a significantly larger scale. Recall that the
goal of this paper is to identify the persons given aligned
images, which are the cases in most person re-identification
benchmark datasets, while open-world re-id this is more
a system level concept that must deal with issues such
as person detection, tracking, re-id, data association, etc.
Therefore, open-world re-id is out of scope of our current
work.

Structured learning has been also used in the object
tracking literature (e.g. [49]) for data association. The
biggest difference, however, between our method and these
tracking methods is that in our re-id cases, we do not have
any temporal or location information with data, in general,
which leads to totally different goals: our method aims to
find the correct matches among the entities using structured
matching in testing based on only the appearance infor-
mation, while in tracking the algorithms aim to associate
the same object with small appearance variations in two
adjacent frames locally.

The rest of this paper is organized as follows: Section 2
explains our structured prediction method in detail. Section
3 lists some of our implementation details. Section 4 reports
our experimental results on the benchmark datasets. We
conclude the paper in Section 5.
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Fig. 3. Overview of our method, PRISM, consisting of two levels
where (a) entity-level structured matching is imposed on top of (b)
image-level visual word deformable matching. In (a), each color
represents an entity, and this example illustrates the general situation
for re-id, including single-shot, multi-shot, and no match scenarios.
In (b), the idea of visual word co-occurrence for measuring image
similarities is illustrated in a probabilistic way, where l1, l2 denote
the person entities, u1,u2,v1,v2 denote different visual words, and
h1,h2 denote two locations.

2 PRISM
In this paper we focus on two camera re-id problems, as
is common in the literature. In the sequel we present an
overview of our proposed method.

2.1 Overview
Let us first describe the problem we often encounter during
testing. We are given N1 probe entities (Camera 1) that are
to be matched to N2 gallery entities (Camera 2). Fig. 3
depicts a scenario where entities may be associated with
a single image (single-shot), multiple images (multi-shot)
and be unmatched to any other entity in the probe/gallery
(e.g. “black”, “orange”, and “green” entities in (a)). Existing
methods could fail here for the reason that entities are
matched independently based on pairwise similarities be-
tween the probes and galleries leading to the possibility of
matching multiple probes to the same entity in the gallery.
Structured matching is a framework that can address some
of these issues.

To build intuition, consider ȳij as a binary variable
denoting whether or not there is a match between ith probe
entity and jth gallery entity, and sij as their similarity
score. Our goal is to predict the structure, ȳ, by seeking a
maximum bipartite matching:

max
∀i,∀j,ȳij∈[0,1]

∑
i,j

ȳijsij , s.t. ȳ = [ȳij ]∀i,∀j ∈ Y (1)

where Y could be the sub-collection of bipartite graphs
accounting for different types of constraints. For instance,
Y = {ȳ | ∀i,

∑
j ȳij ≤ ri, ∀j,

∑
i ȳij ≤ gj} would

account for the relaxed constraint to identify at most ri
potential matches from the gallery set for probe i, and at
most gj potential matches from the probe set for gallery j.
Hopefully the correct matches are among them.

Learning Similarity Functions: Eq. 1 needs similarity
score sij for every pair of probe i and gallery j, which
is a priori unknown and could be arbitrary. Therefore, we

seek similarity models that can be learned from training
data based on minimizing some loss function.

Structured learning [2] formalizes loss functions for
learning similarity models that are consistent with testing
goals as in Eq. 1. To build intuition, consider the example
of text documents, where each document is a collection
of words chosen from a dictionary V . Let Di, Dj be
documents associated with probe i and gallery j. Let D
denote the tuple of all training probe and gallery documents.
A natural similarity model is one based on shared-words in
the two documents, namely, sij =

∑
v∈V wv1{v∈Di∩v∈Dj}.

wv denotes the importance of word v in matching any
two arbitrary documents. The learning problem reduces
to learning the weights wv for each word from training
instances that minimizes some loss function. A natural
loss function is one that reflects our objectives in testing.
In particular, substituting this similarity model in Eq. 1,
we obtain

∑
i,j ȳijsij =

∑
v∈V wv

∑
i,j ȳij1{v∈Di∩v∈Dj}.

We denote as fv(D, ȳ) =
∑
i,j ȳij1{v∈Di∩v∈Dj} the basis

function associated with word v. It measures the frequency
with which word v appears in matched training instances.
A loss function must try to ensure that,∑

v∈V
wvfv(D,y) ≥

∑
v∈V

wvfv(D, ȳ), ∀ ȳ ∈ Y (2)

where ȳ is any bipartite matching and y is the ground-truth
bipartite matching. Hinge losses can be used to penalize
violations of Eq. 2. Note that such loss functions only
constrain the weights so that they perform better only on
alternative bipartite matchings, rather than any arbitrary ȳ.

Similarity Models for Re-ID are more complex relative
to the example above. First, we typically have images and
need a way to encode images into visual words. Second,
visual words are not typically shared even among matched
entities. Indeed a key challenge here is to account for
significant visual ambiguity and spatial distortion, due to
the large variation in appearance of people from different
camera views.

We propose similarity models based on cross-view vi-
sual word co-occurrence patterns. Our key insight is that
aspects of appearance that are transformed in predictable
ways, due to the static camera view angles, can be sta-
tistically inferred through pairwise co-occurrence of visual
words. In this way, we allow the same visual concepts to be
mapped into different visual words, and account for visual
ambiguity.

We present a probabilistic approach to motivate our
similarity model in Fig. 3(b). We let the similarity sij be
equal to the probability that two entities are identical, i.e. ,

sij
∆
= p(ȳij = 1|I(1)

i , I
(2)
j ) (3)

=
∑

u∈U,v∈V,h∈Π

p(ȳij = 1|u,v)p(u,v|h, I(1)
i , I

(2)
j )p(h)

=
∑

u∈U,v∈V
p(ȳij = 1|u,v)

[∑
h∈Π

p(u,v|h, I(1)
i , I

(2)
j )p(h)

]
,
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where I
(1)
i , I

(2)
j denote two images from camera view 1

(left) and 2 (right), respectively, u ∈ U ,v ∈ V denote the
visual words for view 1 and view 2, and h ∈ Π denotes
the shared spatial locations.

Following along the lines of the text-document setting
we can analogously let wuv = p(ȳij = 1|u,v) denote
the likelihood (or importance) of co-occurrence of the
two visual words among matched documents. This term
is data-independent and must be learned from training
instances as before. The basis function, fuv(·) is given
by
∑

h∈Π p(u,v|h, I
(1)
i , I

(2)
j )p(h) and must be empirically

estimated. The basis function fuv(·) measures the frequency
with which two visual words co-occur after accounting
for spatial proximity. The term p(u,v|h, I(1)

i , I
(2)
j ) here

denotes the joint contribution of the visual words at location
h. To handle spatial distortion of visual words, we allow
the visual words to be deformable, similar to deformable
part model [50], when calculating their joint contribution.
p(h) denotes the importance of location h for prediction.

In summary, our similarity model handles both visual
ambiguity (through co-occurring visual words) and spatial
distortion simultaneously. We learn parameters, wuv , of our
similarity model along the lines of Eq. 2 with analogous
structured loss functions that penalize deviations of pre-
dicted graph structures from ground-truth annotated graph
structures. In the following sections we present more details
of the different components of our proposed approach.

2.2 Structured Matching of Entities in Testing

Now let us consider the re-id problem as a bipartite graph
matching problem, where all the entities are represented as
the nodes in the graph, forming two sets of nodes for the
probe set and the gallery set, respectively, and the matching
relations are represented as the edges with weights from
{0, 1}, as illustrated in Fig. 3(a).

The key insight of our structured matching in testing is
to narrow down the feasible solution space for structured
prediction in weighted bipartite graph matching based on
the prior knowledge on correct matching structures.

During training, since the bipartite graph can be defined
based on the training data, the degree of each node can be
easily calculated. But during testing we have to predict the
degree of each node. Usually the node degrees in the probe
can be given beforehand. For instance, we would like to
find at most ri entity matches in the gallery set for entity
i in the probe set so that hopefully the correct match is
among them, then the degree of node i in the graph is ri.
However, this is not the case for the nodes in the gallery.

Therefore, without any prior on the graph structure
during testing, we enforce it to have the following structural
properties, which are very reasonable and practical:

(1) All the entities in either gallery or probe set are
different from each other, and every test entity i in
the probe can be equally matched with any entity in
the gallery. It turns out that in this way we actually
maximize the matching likelihood for the test entity i.

(a) (b)

Fig. 4. Illustration of our predicted bipartite matching graphs,
where red and blue nodes represent the probe and gallery sets,
respectively. Both graphs in (a) and (b) are examples which satisfy
the conditions (1) and (2) during testing.

(2) We constrain the nodes in the gallery set to have
similar degrees. This helps avoid the mismatched cases
such as multiple entities in the probe being matched
with the same entity in the gallery.

We illustrate two examples for our predicted graphs
during testing that satisfy the both conditions in Fig. 4,
and we would like to find at most ri = 2 matches in the
gallery for each probe. Then the red node degrees can be
no large than 2. Accordingly, the total degree in the gallery
set, where each node degree needs to be similar to others,
should be the same as that in the probe set. By minimizing
the entropy of the node degrees in the gallery, we can easily
calculate the upper bound of the gallery node degrees in (a)
as
⌈

4×2
4

⌉
= 2 and in (b) as

⌈
4×2

5

⌉
= 2, respectively.

By incorporating these node degree upper bounds, we
can narrow down the feasible solution space for correct
matching structures from {0, 1}N1×N2 , where N1 and N2

denote the numbers of nodes in the bipartite graph from
view 1 (probe) and view 2 (gallery), to Y such that

Y =y
∣∣∣∀i,∀j, yij ∈ {0, 1},∑

j

yij ≤ ri,
∑
i

yij ≤
⌈∑

i ri
N2

⌉ ,

(4)

where ∀i, ri denotes the predefined degree for node i in
the probe, and d·e denotes the ceiling function. As we see,
ri and

⌈∑
i ri
N2

⌉
are used to control the node degrees in the

probe and gallery, respectively, and
⌈∑

i ri
N2

⌉
enforces the

gallery node degrees to be similar to each other.
Then we can formulate our structured matching, i.e.

weighted bipartite graph matching, for re-id during testing
as follows:

y∗ = arg max
ȳ∈Y

wT f(X , ȳ) = arg max
ȳ∈Y

∑
i,j

ȳijw
Tφ(xij)

 ,

(5)

where xij ∈ X denotes an entity pair between entity i in the
probe and entity j in the gallery, φ(·) denotes the similarity
measure function, w denotes the weight vector for measur-
ing entity similarities, (·)T denotes the matrix transpose
operator, ȳ ∈ Y denotes a matching structure from the
structure set Y , and y∗ denotes the predicted matching



6

structure for re-id. Note that f(X , ȳ) =
∑
i,j ȳijφ(xij) is

our basis function for re-id.
Functionally, w and φ(xij) in Eq. 5 stand for p(ȳij =

1|u,v) and
∑

h∈Π p(u,v|h, I
(1)
i , I

(2)
j )p(h) in Eq. 3, re-

spectively. ∀i,∀j,wTφ(xij) defines the edge weight be-
tween node i and node j in the bipartite graph. Our method
learns the 0/1 assignments for the edges under the structural
conditions, so that the total weight over the bipartite graph
is maximized. Given these edge weights, we can utilize
linear programming to solve Eq. 5, and then threshold
the solution to return the 0/1 assignments. Notice that our
structured matching can handle the general entity matching
problem as illustrated in Fig. 3(a), which is different from
conventional re-id methods.

2.3 Similarity Models
Now we come to the question of as to how we define
our similarity measure function φ(·) in Eq. 5. Recall that
our method has to deal with (1) single-shot learning, (2)
multi-shot learning, (3) visual ambiguity, and (4) spatial
distortion. Following Fig. 3(b), we define φ(·) based on
the cross-view visual word co-occurrence patterns.

2.3.1 Locally Sensitive Co-occurrence [6]
We need co-occurrence models that not only account for
the locality of appearance changes but also the random
spatial and visual ambiguity inherent in vision problems.
Recall that we have two codebooks U = {u} and V = {v}
for view 1 and view 2, respectively. Our codebook con-
struction is global and thus only carries information about
distinctive visual patterns. Nevertheless, for a sufficiently
large codebook distinctive visual patterns are mapped to
different elements of the codebook, which has the effect of
preserving local visual patterns. Specifically, we map each
pixel at 2D location π ∈ Π of image I in a view into one
codeword to cluster these pixels.

To emphasize local appearance changes, we look at the
spatial distribution of each codeword. Concretely, we let
Πu = C(I,u) ⊆ Π (resp. Πv = C(I,v) ⊆ Π) denote
the set of pixel locations associated with codeword u
(resp. v) in image I and associate a spatial probability
distribution, p(π|u, I) (resp. p(π|v, I)), over this observed
collection. In this way visual words are embedded into a
family of spatial distributions. Intuitively it should now be
clear that we can use the similarity (or distance) of two
corresponding spatial distributions to quantify the pairwise
relationship between two visual words. This makes sense
because our visual words are spatially locally distributed
and small distance between spatial distributions implies
spatial locality. Together this leads to a model that accounts
for local appearance changes.

While we can quantify the similarity between two distri-
butions in a number of ways, the kernel mean embedding
[7] method is particularly convenient for our task. The
basic idea to map the distribution, p, into a reproducing
kernel Hilbert space (RKHS), H, namely, p → µp(·) =∑
K(·,π)p(π)

∆
= Ep(K(·,π)). For universal kernels,

such as RBF kernels, this mapping is injective, i.e., the
mapping preserves the information about the distribution
[7]. In addition we can exploit the reproducing property to
express inner products in terms of expected values, namely,
〈µp,Φ〉 = Ep(Φ), ∀Φ ∈ H and obtain simple expressions
for similarity between two distributions (and hence two
visual words) because µp(·) ∈ H.

To this end, consider the codeword u ∈ U in image
I
(1)
i and the codeword v ∈ V in image I

(2)
j . The co-

occurrence matrix (and hence the appearance model) is the
inner product of visual words in the RKHS space, namely,[

φ(xij)
]
uv

=
〈
µ
p(·|u,I(1)i )

, µ
p(·|v,I(2)j )

〉
(6)

=
∑

πu∈Π

∑
πv∈Π

K(πu,πv)p(πu|u, I(1)
i )p(πv|v, I(2)

j ),

where we use the reproducing property in the last equality
and [·]uv denotes the entry in φ(xij) for the codeword pair
(u,v).

Particularly, in [6] we proposed a latent spatial kernel.
This is a type of probability product kernel that has been
previously proposed [8] to encode generative structures into
discriminative learning methods. In our context we can
view the presence of a codeword u at location πu as a
noisy displacement of a true latent location h ∈ Π. The
key insight here is that the spatial activation of the two
codewords u and v in the two image views I

(1)
i and I

(2)
j are

conditionally independent when conditioned on the true la-
tent location h, namely, the joint probability factorizes into
p{πu,πv|h, I(1)

i , I
(2)
j } = p{πu|h, I(1)

i }p{πv|h, I
(2)
j }. We

denote the noisy displacement likelihoods, p{πu|h, I(1)
i } =

κ(πu,h) and p{πv|h, I(2)
j } = κ(πv,h) for simplicity.

This leads us to K(πu,πv) =
∑

h κ(πu,h)κ(πv,h)p(h),
where p(h) denotes the spatial probability at h. By plug-
ging this new K into Eq. 6, we have[
φ(xij)

]
uv

=
∑

πu∈Π

∑
πv∈Π

∑
h∈Π

κ(πu,h)κ(πv,h)p(h) (7)

· p(πu|u, I(1)
i )p(πv|v, I(2)

j )

≤
∑
h

max
πu

{
κ(πu,h)p(πu|u, I(1)

i )
}

·max
πv

{
κ(πv,h)p(πv|v, I(2)

j )
}
p(h),

where the inequality follows by rearranging the summations
and standard upper bounding techniques. Here we use an
upper bound for computational efficiency, and assume that
p(h) is a uniform distribution for simplicity without further
learning. The main idea here is that by introducing the latent
displacement variables, we have a handle on view-specific
distortions observed in the two cameras. Using different
kernel functions κ, the upper bound in Eq. 7 results in
different latent spatial kernel functions.

Fig. 5 illustrates the whole process of generating the
latent spatial kernel based appearance model given the
codeword images, each of which is represented as a collec-
tion of codeword slices. For each codeword slice, the max
operation is performed at every pixel location to search for
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Fig. 5. Illustration of visual word co-occurrence model generation process in [6]. Here, the white regions in the codeword slices indicate
the pixel locations with the same codeword. “A” and “B” denote two arbitrary pixel locations in the image domain. And “Σ” denotes a sum
operation which sums up all the values in the point-wise product matrix into a single value [φ(xij)]uv in the model.

the spatially closest codeword in the slice. This procedure
forms a distance transform image, which is further mapped
to a spatial kernel image. It allows each peak at the
presence of a codeword to be propagated smoothly and
uniformly. To calculate the matching score for a codeword
co-occurrence, the spatial kernel from a probe image and
another from a gallery image are multiplied element-wise
and then summed over all latent locations. This step guar-
antees that our descriptor is insensitive to the noise data in
the codeword images. This value is a single entry at the
bin indexing the codeword co-occurrence in our descriptor
for matching the probe and gallery images. As a result,
we have generated a high dimensional sparse appearance
descriptor. Note that we simply the computation of this
model by utilizing the indicator function for p(πu|u, I(1)

i )

and p(πv|v, I(2)
j ), respectively. Namely, p(πu|u, I(1)

i ) = 1

(resp. p(πv|v, I(2)
j ) = 1) if the pixel at location πu (resp.

πv) in image I
(1)
i (resp. I

(2)
j ) is encoded by codeword u

(resp. v); otherwise, 0.

2.3.2 Multi-Shot Visual Word Co-occurrence Models
By comparing the simplified model in Eq. 7 with Eq. 3, we
can set

p(u,v|h, I(1)
i , I

(2)
j )

∆
= max

πu∈Πu

κ(πu,h) · max
πv∈Πv

κ(πv,h),

(8)

where maxπu∈Πu
κ(πu,h) and maxπv∈Πv

κ(πv,h) can
be computed independently once for comparing similarities,
making the calculation much more efficient. This model
cannot, however, handle the multi-shot scenario directly.

In this paper we extend the visual word co-occurrence
model in [6] to the multi-shot scenario, and propose three
more efficient spatial kernel functions for κ.

Let ∀p, q, I(p)
q = {I(p)

mq}
p=1,2

mq=1,··· ,N(p)
q

be the image set
with the same image resolution for entity q from view p,

Fig. 6. Illustration of the three efficient spatial kernels for κ.

where ∀mq, I
(p)
mq denotes the (mq)

th image, and σ be the
scale of patches centered at these locations. Then we can
define our φ(xij) as follows:[

φ(xij)
]
uv

=
∑
h∈Π

[
ψ(I(1)

i ,h, σ)
]
u
·
[
ψ(I(2)

j ,h, σ)
]
v
,

(9)

where ψ denotes the multi-shot visual word descriptor at
location h for each entity, and [·]u (resp. [·]v) denotes the
entry in the vector for u (resp. v) at location h.

Next, we will take [ψ(I(1)
i ,h, σ)]u as an example to

explain its definition, and accordingly [ψ(I(2)
j ,h, σ)]v can

be defined similarly. Letting Πu(I
(1)
mi) be the set of locations

where pixels are encoded by visual word u in image I
(1)
mi ,

based on Eq. 8 we define [ψ(I(1)
i ,h, σ)]u as follows:[

ψ(I(1)
i ,h, σ)

]
u

=
1

|I(1)
i |

∑
I
(1)
mi
∈I(1)i

max
πu∈Πu

(
I
(1)
mi

)κ (πu,h;σ) ,

(10)
where | · | denotes the cardinality of a set, i.e. the number
of images for person entity i from view 1, and σ is the
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spatial kernel parameter controlling the locality. For multi-
shot learning, we take each sequence as a collection of
independent images, and utilize the average to represent the
entity. Even though we use such simple representation (e.g.
totally ignoring the temporal relations between images), it
turns out that our method can outperform the current state-
of-the-art significantly for the multi-shot scenario, as we
will demonstrate in Section 4.4.

The choices for the spatial kernel κ in Eq. 10 are quite
flexible. To account for computational efficiency, here we
list three choices, i.e. (1) truncated Gaussian filters (κ1),
(2) truncated gradient of Gaussian filters (κ2), and (3) box
filters [51] (κ3). Their definitions are shown below:

κ1 =

{
exp

{
−dist(πs,h)

σ1

}
, if dist(πs,h) ≤ α

0, otherwise.
(11)

κ2 = max

{
0, 1− 1

σ2
· dist(πs,h)

}
, (12)

κ3 =

{
1, if dist(πs,h) ≤ σ3,

0, otherwise.
(13)

where dist(·, ·) denotes a distance function, σ1, σ2, σ3

denote the corresponding scale parameters in the functions,
and α ≥ 0 in Eq. 11 is a predefined thresholding parameter.
These three functions are illustrated in Fig. 6, where the dis-
tance function is the Euclidean distance. Compared with the
Gaussian function that is used in [6], these three functions
produce much sparser features, making the computation
more efficient.

2.4 Structured Learning of Similarity Models
Now we come to the other question of as to how we learn
the weight vector w in Eq. 5.

We denote the training entity set as X =
{
xpq
}p=1,2

q=1,··· ,Np
,

where ∀p, ∀q,xpq denotes the qth person entity from camera
view p. We refer to view 1 as the probe set, and view 2
as the gallery set. Also, we denote y = {yij}i,j≥1 as the
ground-truth bipartite graph structure, and yij = 1 if x

(1)
i

and x
(2)
j are the same; otherwise, yij = 0. Then our method

in training can be formulated as the following structured
learning problem:

min
w,ξ

1

2
‖w‖22 + Cξ (14)

s.t. ∀ȳ ∈ Y,wT f(X ,y) ≥ wT f(X , ȳ) + ∆(y, ȳ)− ξ,
ξ ≥ 0,

where w is the weight vector, ȳ ∈ Y denotes a predicted
bipartite graph structure, f(X ,y) =

∑
i,j yijφ(xij) (resp.

f(X , ȳ) =
∑
i,j ȳijφ(xij)) denotes the basis function

under the ground-truth (resp. predicted) graph structure,
∆(y, ȳ) =

∑
i,j |yij−ȳij | denotes the loss between the two

structures, C ≥ 0 is a predefined regularization constant,
and ‖ · ‖2 denotes the `2 norm of a vector. Here the
constraint is enforcing the structured matching score of the
ground-truth structure to be the highest among all possible
matching structures in Y . In order to adapt the definition

Algorithm 1 Structured learning of PRISM
Input : training entity set X , ground-truth matching struc-

ture y, predefined regularization parameter C ≥ 0
Output: w

Construct the feasible solution space Y;
Randomly sample a subset of matching structures Ȳ ⊂ Y;
repeat

w← RankSVM_Solver(X ,y, Ȳ, C);
y∗ ← arg maxȳ∈Y wT f(X , ȳ) + ∆(y, ȳ);
Ȳ ← Ȳ

⋃
y∗;

until Converge;
return w

of Y in Eq. 4 to the ground-truth matching structure y,
we can simply set ri = maxi

∑
j yij , and substitute this

value into Eq. 4 to construct the feasible solution space
Y . Same as the structured matching in testing, in training
we also utilize a priori knowledge on the correct matching
structures to reduce the chance of mismatching.

In principle we can solve Eq. 14 using 1-slack structural
SVMs [52]. We list the cutting-plane algorithm for training
PRISM in Alg. 1. The basic idea here is to select most
violated matching structure y∗ from the feasible set Y in
each iteration, and add it into the current feasible set Ȳ , and
resolve Eq. 14 using Ȳ . In this way, the solution searching
space is dependent on Ȳ rather than Y . In each iteration, we
can simply adopt RankSVM solver [53] to find a suitable w.
For inference, since we have ∆(y, ȳ) =

∑
i,j |yij − ȳij | =∑

i,j(yij − ȳij)2 (because of ∀yij ∈ {0, 1},∀ȳij ∈ {0, 1}),
we indeed solve a binary quadratic problem, which can be
efficiently solved using the similar thresholding trick for
inference in testing.

Note that in order to speed up the learning we can
alternatively adopt large-scale linear RankSVMs [53] (or
even linear SVMs [54] as we did in [6]) with a large
amount of randomly sampled matching structures from
Y to approximately solve Eq. 14. This trick has been
widely used in many large-scale training methods (e.g. [55])
and demonstrated its effectiveness and efficiency without
notable performance loss. Similarly, in our re-id cases we
implement both learning strategies and have found that the
performance loss is marginal.

3 IMPLEMENTATION

We illustrate the schematics of our method in Fig. 7. At
training stage, we extract low-level feature vectors from
randomly sampled patches in training images, and then
cluster them into codewords to form a codebook, which is
used to encode every image into a codeword image. Each
pixel in a codeword image represents the centroid of a patch
that has been mapped to a codeword. Further, a visual word
co-occurrence model (descriptor) is calculated for every
pair of gallery and probe images, and the descriptors from
training data are utilized to train our classifier using Eq.
14. We perform re-id on the test data using Eq. 5.
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Fig. 7. The pipeline of our method, where “codebook” and “classifier” are learned using training data, and each color in the codeword
images denotes a codeword.

Specifically, we extract a 672-dim Color+SIFT1 [21]
feature vector from each 5×5 pixel patch in images, and
utilize K-Means to generate the visual codebooks based on
about 3 × 104 randomly selected Color+SIFT features per
camera view. Then every Color+SIFT feature is quantized
into one of these visual words based on minimum Euclidean
distance. The number of visual words per view is set by
cross-validation.

We employ the chessboard distance for Eq. 11, 12 and
13, consider every pixel location as h, and set the scale
parameter σ by cross-validation for the spatial kernel κ.
Similarly the regularization parameter C in Eq. 14 is set
by cross-validation.

During testing, for performance measure we utilize a
standard metric for re-id, namely, Cumulative Match Char-
acteristic (CMC) curve, which displays an algorithm’s
recognition rate as a function of rank. For instance, a
recognition rate at rank-r on the CMC curve denotes
what proportion of queries are correctly matched to a
corresponding gallery entity at rank-r or better. Therefore,
we set ∀i, ri = r in Eq. 5, and solve the optimization
problem.

Note that we can further save on computational time for
prediction during testing. This follows from the fact that
we do not need the exact solution for Eq. 5, as long as we
can use the current solution to find the ranks of entities in
the gallery for each probe, to determine the top matches.
Therefore, we ask the linear programming solver to run for
10 iterations at most in our experiments.

4 EXPERIMENTS

We test our method on three benchmark datasets, i.e.
VIPeR [56], CUHK Campus [21], and iLIDS-VID [57],

1. We downloaded the code from https://github.com/Robert0812/
salience_match.

for both single-shot and multi-shot scenarios. We do not
re-implement comparative methods. Instead, we try to cite
numbers/figures of comparative methods either from re-
leased codes or from the original papers as accurately as
possible (i.e. for methods LAFT [58] and LDM [59] in
Table 1 and Table 2, respectively), if necessary. Also, we
compare our method against currently known state-of-the-
art on these datasets. Our experimental results are reported
as the average over 3 trials.

We denote the three derivatives of our method based on
different spatial kernels as (1) PRISM-I for using κ1 in Eq.
11, (2) PRISM-II for using κ2 in Eq. 12, and (3) PRISM-
III for using κ3 in Eq. 13, respectively.

4.1 Datasets and Experimental Settings

VIPeR [56] consists of 632 entities captured in two dif-
ferent camera views, denoted by CAM-A and CAM-B,
respectively. Each image is normalized to 128×48 pixels.
We follow the experimental set up described in [21]. The
dataset is split in half randomly, one partition for training
and the other for testing. Samples from CAM-A and CAM-
B form the probe and gallery sets, respectively.

CUHK Campus [58], [21] consists of 1816 people cap-
tured from five different camera pairs, labeled from P1 to P5
and denoted as CAM-1 and CAM-2 per camera pair which
form the probe and gallery sets, respectively. Each camera
view has 2 images per entity, and each image contains
160×60 pixels. We follow the experimental settings in [58],
[21], and use only images captured from P1. We randomly
select 485 individuals from the dataset for training, and use
the rest 486 individuals for testing.

iLIDS-VID [57] is a new re-id dataset created based
on two non-overlapping camera views from the i-LIDS
Multiple-Camera Tracking Scenario (MCTS) [60]. For
single-shot learning, there are 300 image pairs for 300

https://github.com/Robert0812/salience_match
https://github.com/Robert0812/salience_match
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Fig. 8. The interpretation of our learned model parameter w in Eq. 14. The enclosed regions denote the pixels encoded by the same visual
words, as used in Fig. 2. The learned weight for the visual word pair “white” and “light-blue” from the two camera views has a positive value,
contributing to identifying the same person. On the other hand, the learned weight for the visual word pair “white” and “black” is negative,
which contributes to identifying different persons.

randomly selected people with image size equal to 128×64
pixels. For multi-shot learning, there are 300 pairs of image
sequences for the 300 people. The length of each image
sequence varies from 23 to 192 frames with average of 73.
Following [57], we randomly select 150 people as training
data, and use the rest 150 people as testing data. The data
from the first and second camera views forms the probe
and gallery sets, respectively.

4.2 Model Interpretation
We start by interpreting our learned model parameters
w in Eq. 14. We show a typical learned w matrix in
Fig. 8 with 30 visual words per camera view. Recall that
w

∆
= p(ȳij = 1|u,v) denotes how likely two images

come from a same person according to the visual word
pairs, and our spatial kernel κ always returns non-negatives
indicating the spatial distances between visual word pairs
in two images from two camera views. As we see in Fig.
8, by comparing the associated learned weights, “white”
color in camera A is likely to be transfered into “light-blue”
color (with higher positive weight), but very unlikely to be
transfered into “black” color (with lower negative weight)
in camera B. Therefore, when comparing two images from
camera A and B, respectively, if within the same local
regions the “white” and “light-blue” visual word pair from
the two images occurs, it will contribute to identifying the
same person; on the other hand, if “white” and “black” co-
occur within the same local regions in the images, it will
contribute to identifying different persons.

4.3 Single-Shot Learning
Now we discuss our results for single-shot learning (see
the definition in Section 1.1). Table 1 lists our comparison
results on the three datasets, where the numbers are the
matching rates over different ranks on the CMC curves.

Here we divide comparative methods into 2 subcate-
gories: non-fusion based and fusion based methods. Fusion

2. ImgF: image-foreground feature representations

TABLE 1
Matching rate comparison (%) for single-shot learning, where “-”

denotes no result reported for the method.

Rank r = 1 5 10 15 20 25
VIPeR

SCNCD [23] 20.7 47.2 60.6 68.8 75.1 79.1
LADF [42] 29.3 61.0 76.0 83.4 88.1 90.9
Mid-level filters [39] 29.1 52.3 65.9 73.9 79.9 84.3
Mid-level filters+LADF [39] 43.4 73.0 84.9 90.9 93.7 95.5
VW-CooC [6] 30.7 63.0 76.0 81.0 - -
RQDA [36] 34.7 65.4 78.6 - 89.6 -
Semantic (super. single) [24] 31.1 68.6 82.8 - 94.9 -
Polynomial kernel [35] 36.8 70.4 83.7 - 91.7 -
QALF [36] 30.2 51.6 62.4 - 73.8 -
Semantic (super. fusion) [24] 41.6 71.9 86.2 - 95.1 -
SCNCDfinal(ImgF) [23]2 37.8 68.5 81.2 87.0 90.4 92.7
Ensemble Color Model [45] 38.9 67.8 78.4 - 88.9 -
Metric ensembles [44] 45.9 77.5 88.9 - 95.8 -
Kernel ensembles-I [27] 35.1 68.2 81.3 - 91.1 -
Kernel ensembles-II [27] 36.1 68.7 80.1 - 85.6 -
Ours: PRISM-I 35.8 69.9 80.4 86.7 89.6 90.5
Ours: PRISM-II 36.7 66.1 79.1 85.1 90.2 92.4
Ours: PRISM-III 35.4 66.1 77.9 85.1 87.7 90.5

CUHK01
LAFT [58] 25.8 55.0 66.7 73.8 79.0 83.0
Mid-level filters [39] 34.3 55.1 65.0 71.0 74.9 78.0
VW-CooC [6] 44.0 70.5 79.1 84.8 - -
Semantic (super. single) [24] 32.7 51.2 64.4 - 76.3 -
Semantic (super. fusion) [24] 31.5 52.5 65.8 - 77.6 -
Metric ensembles [44] 53.4 76.4 84.4 - 90.5 -
Ours: PRISM-I 51.8 72.0 79.5 83.7 86.9 88.2
Ours: PRISM-II 50.1 70.1 79.4 82.9 85.4 87.8
Ours: PRISM-III 52.0 71.8 79.9 84.0 85.9 87.8

iLIDS-VID
Colour&LBP [61]+RSVM 9.1 22.6 33.2 45.5 - -
SS-SDALF [13] 5.1 14.9 20.7 31.3 - -
Salience [22] 10.2 24.8 35.5 52.9 - -
Ours: PRISM-I 22.0 43.3 52.0 62.7 73.3 77.3
Ours: PRISM-II 20.0 39.3 52.7 60.0 70.0 76.7
Ours: PRISM-III 16.7 36.7 52.0 56.7 67.3 74.7

based methods aim to combine multiple features/metrics
to improve the matching performance, while non-fusion
methods perform recognition using single type of features
or a metric. Overall, fusion based methods achieve better
performance than non-fusion based methods (including
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(a) (b)

Fig. 9. CMC curve comparison on (a) VIPeR and (b) CUHK01, where “SS” and “MS” denote the single-shot and multi-shot, respectively.
Notice that except our results, the rest are copied from [39].

Fig. 10. CMC curve comparison on VIPeR using different numbers of entities in the probe set for robust re-id.

ours, which is always comparable). These methods, how-
ever, lack of clear interpretability of why the performance is
better. Among non-fusion based methods, on VIPeR “Mid-
level filters+LADF” from [39] is the current best method,
which utilized more discriminative mid-level filters as fea-
tures with a powerful classifier, and “SCNCDfinal(ImgF)”
from [23] is the second, which utilized only foreground
features. Our results are comparable to both of them. How-
ever, PRISM always outperforms their original methods
significantly when either the powerful classifier or the fore-
ground information is not used. On CUHK01 and iLIDS-
VID, PRISM performs the best. At rank-1, it outperforms
[6] and [22] by 8.0% and 11.8%, respectively. Some CMC
curves of different methods on VIPeR and CUHK01 are
compared in Fig. 9. Our current method only utilizes the
visual word co-occurrence model. Integration of multiple
features will be explored in our future work.

Compared with our previous work in [6], our improve-
ment here mainly comes from the structured matching
in testing by precluding the matches that are probably
wrong (i.e. reducing the feasible solution space). Clearly
our method outperforms [6] by 6.0% on VIPeR and 8.0%
on CUHK01 at rank-1 rank in terms of matching rate.

4.4 Multi-Shot Learning
For multi-shot learning (see the definition in Section 1.1),
since VIPeR does not have multiple images per person,

3. The code is downloaded from http://lrs.icg.tugraz.at/research/kissme/.

TABLE 2
Matching rate comparison (%) for multi-shot learning, where “-”

denotes no result reported for the method.

Rank r = 1 5 10 15 20 25
CUHK01

LAFT [58] 31.4 58.0 68.3 74.0 79.0 83.0
LDM [59] 12.1 31.7 41.7 48.3 54.0 58.0
Ours: PRISM-I 66.5 82.9 87.9 90.7 92.0 93.4
Ours: PRISM-II 68.1 80.7 85.8 88.7 90.3 92.2
Ours: PRISM-III 64.6 79.6 85.8 89.5 90.5 92.0

iLIDS-VID
MS-SDALF [13] 6.3 18.8 27.1 - 37.3 -
MS-Colour&LBP+RSVM 23.2 44.2 54.1 - 68.8 -
DVR [57] 23.3 42.4 55.3 - 68.4 -
MS-SDALF+DVR 26.7 49.3 61.0 - 71.6 -
MS-Colour&LBP+DVR 34.5 56.7 67.5 - 77.5 -
Salience [22]+DVR 30.9 54.4 65.1 - 77.1 -
Ours: PRISM-I 60.7 86.7 89.3 94.7 96.0 96.7
Ours: PRISM-II 62.0 86.0 90.0 94.7 96.0 96.7
Ours: PRISM-III 62.0 86.0 90.0 94.7 96.0 96.7

we compare our method with others on CUHK01 and
iLIDS-VID only, and list the comparison results in Table
2. Clearly, PRISM beats the state-of-the-art significantly by
36.7% on CUHK01, and 27.5% on iLIDS-VID, respec-
tively, at rank-1. Note that even compared with the best
fusion method [44] on CUHK01, our method outperforms
it by 14.7% at rank-1. Our multi-shot CMC curves on
CUHK01 are also shown in Fig. 9(b) for comparison.

The improvement of our method for multi-shot learning
mainly comes from the multi-instance setting of our latent

http://lrs.icg.tugraz.at/research/kissme/
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TABLE 3
Matching accuracy comparison (%) for robust re-id.

158 probes 79 probes 40 probes
Rank r = 1 5 10 15 20 25 1 5 10 15 20 25 1 5 10 15 20 25
KISSME3 18.0 45.3 59.7 68.3 74.5 79.5 20.4 48.7 61.9 70.9 76.5 81.3 15.8 45.0 58.5 68.8 73.8 77.5
KISSME + SM 21.5 48.7 66.1 74.3 80.0 84.0 22.9 50.0 63.3 71.1 76.6 81.6 16.8 42.3 60.5 68.3 76.3 81.5
Ours: PRISM-I 35.9 66.5 81.0 87.2 89.3 90.4 36.7 66.6 80.6 86.1 87.9 89.9 34.5 60.0 71.8 76.0 83.3 87.0
Ours: PRISM-II 32.9 64.3 77.2 83.7 88.2 90.5 32.2 62.2 74.7 83.7 88.0 91.7 29.5 60.8 76.3 81.8 87.8 90.3
Ours: PRISM-III 34.0 63.6 75.6 83.4 87.1 89.7 33.2 62.0 74.2 81.4 84.8 90.5 31.8 59.3 74.8 80.3 84.3 88.0

spatial kernel in Eq. 10. It has been clearly demonstrated
as we compare our performances using single-shot learning
and multi-shot learning on CUHK01. By averaging over
all the gallery images for one entity in multi-shot learning,
the visual word co-occurrence model constructed is more
robust and discriminative than that for single-shot learning,
leading to significant performance improvement.

4.5 Robust Person Re-identification

In this experiment, we would like to demonstrate the
robustness of our method by including the missing match
scenarios for re-id. Here we compare different methods
only on VIPeR for the demonstration purpose.

We utilize KISSME [62] to do the comparison, which
includes 5 different metric learning methods, namely,
KISSME [62], MAHAL (i.e. Mahlanobis distance learn-
ing), ITML [63], LDML [64], and LMNN [65]. These
metric learning methods learn the similarities between
image pairs, which are equivalent to wTφ(xij) in Eq. 5.
Then we apply our structured matching (SM for short) in
Eq. 5 on top of each method above by utilizing these image
pair similarities for comparison.

We first simulate the re-id scenario where every probe has
its match in the gallery set, but not all the galleries have
matches in the probe set. Fig. 10 shows our comparison
results using (a) 158 probes, (b) 79 probes, and (c) 40
probes, respectively, with 316 entities in the gallery set. As
we see, for all the 5 metric learning methods, structured
matching helps improve their performances, in general, un-
der different settings. PRISM always performs best among
all the methods.

Table 3 summarizes the numbers at different ranks
for KISSME, KISSME+SM, and our PRISM in Fig. 10,
since KISSME and KISSME+SM are the most comparable
methods in Fig. 10. At rank-1, PRISM outperforms them
significantly by at least 14.4%. As the number of probes
decreases, in general, at every rank the matching rates of
all the methods degrades. However, as we see, for PRISM
the matching rates are much more stable. By comparing
these results with those in Table 1, we can see that these
results are similar, again demonstrating the robustness of
our structured matching method.

We display representative matching results at rank-1 in
Fig. 11 using PRISM with/without structured matching for
robust re-id. As we see, without structured matching all
the probes are matched with the same entity in the gallery,
inducing incorrect matches. However, structured matching

Fig. 11. Examples of matching result comparison on VIPeR at
rank-1 using PRISM with/without structured matching for robust re-id.
The sizes of the probe and gallery sets are 40 and 316, respectively.

TABLE 4
Average matching accuracy (%) for robust re-id on VIPeR.

# probe KISSME KISSME+SM PRISM-I PRISM-II PRISM-III
158 14.9 20.6 20.9 20.4 21.0
79 15.0 16.5 20.8 20.2 20.8
40 14.4 15.1 22.5 22.2 22.6

can correct this type of errors, find their true matches, and
thus improve the matching rates.

Next we simulate another re-id scenario where not all
the probes/galleries have matches in the gallery/probe sets.
This is a common situation in re-id where missing matches
occur all the time. During testing, we randomly select
158/79/40 probes to be matched with randomly selected
158 galleries, and list in Table 4 the results in terms of
average matching accuracy, i.e. , in the probe set the total
number of true positives (true matches) and true negatives
(true non-matches) divided by the total number of entities.
Still structured matching helps improve the performance,
and PRISM achieves the best.

4.6 Storage & Computational Time
Storage (St for short) and computational time during testing
are two critical issues in real-world applications. In our
method, we only need to store the image descriptors for
calculating similarities between different entities. The com-
putational time can be divided into three parts: (1) image
descriptors T1, (2) entity-matching similarities T2, and (3)
entity-level structured matching T3. We do not consider the
time for generating Color+SIFT features, since we directly
use the existing code without any control.

We record the storage and computational time using 500
visual words for both probe and gallery sets on VIPeR.
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TABLE 5
Average storage and computational time for our PRISM.

St (Kb) T1 (ms) T2 (ms) T3 (s)
PRISM-I 158.9 77.4 1.3 1.3
PRISM-II 113.7 73.3 1.4 1.5
PRISM-III 16.2 56.4 1.3 1.3

The rest of the parameters are the same as described in
Section 3. Roughly speaking, the storage per data sample
and computational time are linearly proportional to the size
of images and number of visual words. Our implementation
is based on unoptimized MATLAB code. Numbers are
listed in Table 5 for identifying the matches between 316
probes and 316 galleries, including the time for saving
and loading features. Our experiments were all run on a
multi-thread CPU (Xeon E5-2696 v2) with a GPU (GTX
TITAN). The method ran efficiently with very low demand
for storage.

5 CONCLUSION

In this paper, we propose a structured matching based
method for re-id in the contexts of (1) single-shot learning,
and (2) multi-shot learning. We formulate the core of the
re-id problem, i.e. entity matching, as a weighted bipartite
graph matching problem, and try to predict such graph
structures. To handle the huge appearance variation (e.g.
visual ambiguity and spatial distortion) as well as achieving
computational efficiency, we propose a new basis function
to capture the visual word co-occurrence statistics. Our
experiments on several benchmark datasets strongly demon-
strate the power of our PRISM for re-id in both scenarios.
Low demand of storage and good computational efficiency
indicate that our method can be potentially applied to real-
world applications.

Several questions will be considered as our future work.
It would be useful to further reduce the computational
complexity of calculating our pair-wise latent spatial ker-
nels. One possibility is to modify the learning algorithm by
decomposing the weight matrix w into two separable ma-
trices, because our appearance model can be decomposed
into two parts, one from the probe image and the other
from the gallery image. Such decomposition will accelerate
the computation. Second, it would be interesting to learn
the optimal spatial kernels and see how they affect the
behavior of our visual word co-occurrence model. Third, it
would be also interesting to extend our current structured
matching framework to multi-camera settings by adding
more constraints on the matched/dismatched entity pairs
to enforce the structural information (e.g. temporal) in the
network.
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