From the Lab to the Real World: Re-Identification in
an Airport Camera Network

Octavia Camps®, Mengran Gou®, Tom Hebble?, Srikrishna KaranamP, Oliver
Lehmann?®, Yang Li, Richard J. Radke"*, Ziyan WuP, Fei Xiong®

% Department of Electrical and Computer Engineering, Northeastern University
bDepartment of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute

Abstract

Human re-identification across non-overlapping fields of view is one of the fun-
damental problems in video surveillance. While most reported research for this
problem is focused on improving the matching rate between pairs of cropped
rectangles around humans, the situation is quite different when it comes to cre-
ating a re-identification algorithm that operates robustly in the real world. In
this paper, we describe an end-to-end system solution of the re-identification
problem installed in an airport environment, with a focus on the challenges
brought by the real-world scenario. We discuss the high-level system design of
the video surveillance application, and the issues we encountered during our de-
velopment and testing. We also describe the algorithm framework and software
architecture for our human re-identification software, and discuss the problem
of obtaining ground truth. Finally, we report the results of an experiment con-
ducted to illustrate the output of the developed software as well as its feasibility
for the airport surveillance task.

*Corresponding author

Preprint submitted to Elsevier December 21, 2014

1. Introduction

Camera networks, often with little to no field of view overlap, are used to
monitor large public spaces such as airport terminals, train stations and sports
arenas. Thus, there has been a significant effort in the computer vision re-
search community to address the problem of human tracking in video sequences
captured by these types of networks (e.g., [4, 11, 24]).

One of the most challenging issues in multi-camera tracking is to correctly
associate targets across the different viewpoints in the network. This problem is
closely related to the re-identification (re-id) problem where appearance features
are used to match images of people taken from different views. Researchers
address the problem of re-id with emphases on feature selection [2, 7, 20, 25]
and metric learning [3, 16, 18, 28, 17, 27]. Typically, re-id results are reported
in the literature by evaluating and comparing the matching performance of the
proposed algorithms on several standard benchmarking datasets agreed upon
by the research community.

The story is very different when it comes to re-id in a real-world environment.
In addition to addressing a well-defined research problem, i.e., deciding whether
two bounding boxes representing humans correspond to the same person, there
are many other challenges to building a reliable re-identification application for
an actual surveillance system. With respect to hardware, one may need to
consider camera installation locations constrained by security limitations of the
site, low-quality images from legacy analog cameras equipped in the current
network, data storage and transferring strategies, device synchronization, and
network bandwidth. With respect to software, the system must operate in near
real-time, deliver high-quality matching results with few false alarms, and have
a software architecture that is robust to lags and crashes.

Another fundamental difference between real-world re-id and academic re-
search on the problem is that most work in the latter case poses the problem
as: given a probe image of a person, find the single image of the same person
in a gallery of nicely cropped images taken from a different viewpoint. Then,
the re-id performance is usually quantified with a curve illustrating the rank n
matching rate, i.e., the percentage of probe images that matched correctly with
one of the top n images in the gallery set. In the real-world case, instead of us-
ing manually cropped person images, candidates are automatically detected by
a pedestrian detector algorithm running in real time. Furthermore, real-world
users are unlikely to scroll through pages of candidates or wait for long periods
of time for results, so performance at low ranks (e.g., n < 5) at a near real-time
pace is critical.

In this paper, we present the system design of a video surveillance solution
installed in a real-world airport environment, as well as an algorithm framework
for human re-identification. Our goal is to help airport security officers to detect
tagged people of interest in real time. The project involved numerous iterations
of on-site tuning, testing, and evaluation, and we present the challenges we
encountered during its development. We also describe our experiences in moving
from academic computer vision algorithm development to “messy” real-world

implementation and deployment. This paper extends an earlier version of our
work presented in Li et al. [12].

2. Real-World Challenges

Our video surveillance project is centered at a medium-sized airport (Cleve-
land Hopkins International Airport, Cleveland, Ohio, USA). The project goal is
to develop an on-site, real-time video analytic system to assist the U.S. Trans-
portation Security Administration (TSA) and airport security personnel to track
specified people of interest throughout the airport’s surveillance camera network.
We called this task “Tag and Track”. The front end requires a simple graphical
user interface to allow TSA agents to “tag” the person of interest. The back
end requires multiple processes running in real time to recognize, track, and
compare candidates. For the efficiency and stability of the application, these
modules must work in parallel and cooperate with each other smoothly. We also
must deal with challenges imposed by the existing airport surveillance system.
In this section, we address challenges and limitations we encountered in the
real-world system design, installation, running and testing.

2.1. Data Collection, Storage and Transfer

The high-level system design is shown in Figure 1. Unlike traditional surveil-
lance systems, in which camera videos are directly fed into monitoring screens
watched by security staff, video data in an airport needs to be transmitted to
workstations through a secure high-bandwidth network, and then processed by
analytic software.

/Analog Video \
Cameras Encoders Network Video Recorder

w . €

P —
— —

' Digital Cameras '

)

-

Figure 1: High-level system design of our airport human re-identification solution.

While most academic researchers likely use digital cameras in their labs,
many legacy surveillance cameras in long-term installations, such as airports,
are still analog. Much of the existing airport surveillance system at CLE is
equipped with analog cameras, so it was necessary to install video encoders
that convert the feeds into digital video data and embed video metadata. For
this purpose, we use Bosch VIP X1 XF video encoders to convert the analog

video signal to the H.264 standard using a 704 x 408 resolution at 29.97 frames
per second. All of the data is then transmitted not only to the analytic software
but also to an auxiliary Network Video Recorder (NVR) application running on
a data server, which stores the encoded video data for about one week.

The developed video analytic software acquires video feeds directly from the
encoders and performs tracking and re-identification tasks in real time. All of
the data transmissions are via a secure high-bandwidth network, and the whole
system is maintained in a local Ethernet (i.e., no access to the outside Inter-
net). Since the accessibility of the surveillance data from the airport is highly
restricted, only the workstations connected in the local Ethernet are allowed
to acquire the video data. Consequently, we had to conduct a large amount of
software testing on-site, following a process of developing video analytic algo-
rithms in the lab, testing them on small amounts of recorded data cleared by
the airport authorities for our use, and deployed on-site after validation.

In addition, to facilitate systematic performance evaluation, every tenth
frame is recorded at the processing computer. All the recorded data and events
are reviewed by security officers, and brought back to the lab for analysis roughly
every month.

2.2. Video Quality

We observed that several of the legacy analog cameras in the system contain
serious noise and may not maintain focus over time. Figure 2 illustrates sev-
eral sample images. It can also be observed that illumination conditions vary
from camera to camera. Even for the same camera, the illumination can change
throughout the day or with respect to weather conditions. The reflective decora-
tive tile floor also makes foreground detection more difficult. Finally, the videos
also contain periodic temporal jitter that seriously affects tracking algorithms.
We discussed our solution to this problem in Wu et al. [26].

The heavy traffic environment in the airport makes detection and tracking
even harder. In particular, trying to maintain accurate trajectories for each
person in crowded scenes is especially challenging. We will discuss our tracking
and re-id strategy in Section 3.

2.3. Camera Position

Like most public surveillance systems, the camera network at CLE does not
cover the whole airport. In fact, the fields of view are mostly non-overlapping
with large “blind” regions. To complicate matters further, the movements of
humans in an airport are less predictable compared with other surveillance sce-
narios, such as vehicle traffic flow monitoring. For example, in most views there
are no predefined routes or directions for people; after walking out of one view,
people can walk back into the same view, while the algorithm may expect to
detect the person in a different camera. There may be entrances and exits that
are not covered by cameras, so that people can appear or disappear from the
monitoring area with high uncertainty; people may stay for long periods or even
change clothes while being out of the view of any camera, which can cause the
estimation of their motion based on a fixed appearance or a transit-time model

Figure 2: Sample images from airport camera videos.

to fail. Re-identification in this scenario is extremely challenging. Finally, unlike
the standard datasets used to evaluate re-id algorithms, which contain images
taken from cameras whose optical axes have a small angle with the ground plane,
in the airport environments, the angle between the camera optical axis and the
floor is usually large (~45°), causing serious perspective effects (see Figure 2).

3. Algorithms Overview

In this section, we describe an overview of the algorithms used for the airport
surveillance re-identification problem, emphasizing feasibility considerations for
the real-world environment. The goal is to provide reliable re-id candidates
corresponding to a tagged target person in real time. Figure 3 illustrates the
major computer vision steps in the process.

8.1. Detection and Tracking

We begin with foreground detection using the mixture of Gaussians (MoG)
method [22], followed by connected component analysis to group foreground
pixels into blobs. The bounding box of each blob is considered as the region
of interest (ROI). Each ROI is then fed into a real-time pedestrian detection
algorithm as illustrated in Figure 4. For pedestrian detection, we adopted the
aggregated channel features framework of Dolldr et al. [6]. Specifically, a boosted
decision tree classifier is used in conjunction with a sliding window approach.

MOG Foreground Connected

—_—
Detection Component Analysis

Tracking Based on

i «—————— Human Detection
KLT Optical Flow

Tracking

Figure 4: Pedestrian detection example using MoG-foreground detection to reduce computa-
tional complexity.

In our experiments, we found that training camera-specific classifier models re-
sulted in better detection results than using a single model across all the camera
views. To this end, in each camera view, we used 500 ground truth pedestrian
images (forming the positive sample set) and randomly sampled background
images (forming the negative sample set) to train camera-specific decision tree
models. For each image, we constructed multi-scale feature pyramids by ag-
gregating six quantized gradient orientations, L,U, and V color channels, and
normalized gradient magnitudes into a ten-channel feature vector, computed
over each scale. The result is a set of candidate detections of different sizes in-
side each ROI blob. Once the order is received to find a tagged person, human
detection starts to run in all frames in each camera, since new humans may
enter the scene at any time.

At the same time, a second set of candidate bounding boxes is obtained
by propagating the location and bounding boxes of already tracked pedestrians
from the previous to the current frame. For each bounding box, this update
is performed by detecting low-level FAST corner features [19] in the previous
frame cropped to the bounding box, removing any detected scene feature using

a background scene classifier [26], and tracking the remaining features with KLT
trackers [15]. Averaging the resulting motion vectors yields the displacement
update of the bounding box’s position.

Finally, the tracking result is obtained by merging the two sets of candidate
bounding boxes as follows. We compute the intersection of each new candidate
detection with the propagated bounding boxes and find the maximum ratio
between their area of intersection and the area of the smaller bounding box.
The new candidate detection is associated with the corresponding propagated
bounding box if this ratio is above a predefined threshold (in our experiments,
we used 0.8); otherwise, it is used to initialize a new track. Propagated bounding
boxes not matching any candidate detection are retained if both their aspect
ratio and location in the frame are plausible. Figure 5 illustrates the idea.

r—§
91

|
| w
_.’__I
’J

]
Y

\ \ \
3 1 \
\ \ 1
B R
5 - ,‘ " |
[\
\ \
| I
1 ¥
(a) &
2
a

Figure 5: (a) Bounding boxes from previous frame.(b) Bounding boxes propagated from pre-
vious frame using feature detection and KLT tracker (dashed, red); new candidates generated
by the human detector (solid, green). (c) Final bounding boxes for current frame created by

merging the two detections.

3.2. Re-identification

The re-identification process has three key steps. First, a feature descriptor

needs to be extracted from each candidate detection. Second, given a pair of

descriptors X¢arget and X; (one from the tagged target and the other from the
candidate detection), we must compute an appropriate similarity score

85 = f(Xtarget, X;) (1)

to compare them. Lastly, by ranking the similarity scores {s;,j = 1,...,n} in
each frame, an ordered list of “preferred” candidates to be shown to the user
can be generated.

Feature detection for re-id in real-world scenarios is challenging, especially
given the relatively small and low-quality target and candidate images and the
need for real-time performance. Common descriptors, such as SIFT [14] and
SURF [1], are unsuitable for this task due to their computational complexity.
Instead, we found low-level features, such as color and texture histograms, to
be more effective and efficient. In particular, we adopted the method described
by Gray and Tao [7]. The image is divided into 6 horizontal strips. Inside each
strip, 16-bin histograms are computed over 8 color channels (RGB, HSV, and
CbCr) and 19 texture channels (including the response of 13 Schmid filters and 6
Gabor filters). By concatenating all the histograms we get a 2592-dimensional
feature vector for each candidate. We found it was important to rectify the
candidate sub-images based on simple camera calibration information to remove
perspective distortion prior to feature extraction. In the future, we also plan to
incorporate radiometric and color calibration across the cameras.

Many re-id algorithms in the literature define the similarity score s; as a
Mahalanobis-like distance

55 = (Xearget — X;) " M(Xearget — X) (2)

with M = PTP, where P is a projection matrix learned from labeled data
[16, 17, 27, 28]. Based on our experiments in [27] and taking into account com-
putational considerations, in this project we decided to implement the LEFDA
algorithm proposed by Pedagadi et al. [17] to learn P using the following Fisher
discriminative objective function:

P= mgx(PTSbP)’lPTSwP (3)

where S and S? are the within and between scatter matrices, respectively. To
preserve the local similarity, these matrices are defined as:

w 1 - w
SY = 5 DAL (X - X,)(Xs - X,)T @
i
1 n
8" = 0 D0 ALK - X))(Xi - X,)T 5)
2%

where A7 is an affinity matrix and n is the number of samples. The effect of
applying the above projection matrix to the Euclidean distance between the tar-
get and candidate descriptors is that distances between descriptors of the same
person will be smaller than distances between descriptors of different persons.

8.8. Algorithm Discussion

When developing the system for deployment at an airport, we had to consider
requirements for both speed and performance. The algorithms need to be fast

enough to process multiple cameras in real time, and at the same time, find the
person of interest with high confidence.

From a practical point of view, we found that it is important to consider the
“big picture” of how good the results of each sub-process need to be in order
to result in a confident re-id judgment, instead of trying to squeeze the best
performance out of every algorithm at the possible cost of speed. For example,
the MoG foreground detection is likely to fail when the surrounding illumination
changes, but this can be mitigated later in the pipeline by the human detection
step. In fact, a relatively sensitive foreground detection algorithm is preferable in
order to ensure that we will not miss anybody in the detection stage (resulting in
many false alarms that are rejected later). Similarly, there is no state-of-the-art
tracking algorithm that can process multiple streams of airport-quality videos
with high accuracy in real-time. The tracking algorithm we applied may fail
when a candidate person is occluded, several trackers may become focused on the
same person, or the bounding box may drift onto a different person. However,
what it is important is to generate a sufficient number of reliable candidates for
the re-id algorithm; occluded or poor-quality rectangles will simply never rise
to the top of the rank-ordered candidate list.

In terms of computational cost, human detection is the most time-consuming
step in the system; our implementation is close to real-time (around 15 fps on
our videos). However, by filtering out ROIs with small sizes or impossible lo-
cations, and only analyzing viable ones, we highly reduced the computational
cost to around 100 fps. While the process of training the re-id projection matrix
is time-consuming, this is done offline. The on-line re-id process is extremely
fast since it only involves a vector inner product. Thus, there is enough spare
computational power in our system to consider in the future online re-id learn-
ing algorithms, such as updating representative feature vectors after the same
person is confirmed in another view, discriminative model training, or the use
of kernel tricks [27] to improve performance.

4. System Architecture

We approached the deployment of our re-identification algorithms at the
airport with several criteria in mind.

e Modular Architecture: The framework must define high-level func-
tional blocks and the communication among them to allow the easy and
reliable interchange of functional components as research yields new algo-
rithms and approaches.

e Real-time Operation: Communication and data transfer between frame-
work components must not prevent the real-time operation of the complete
system.

e Task-level Parallelism: To perform full functionality in real-time, must
allow for the framework components to operate in parallel while ensuring
that all the modules are working synchronously.

e Language-agnostic API: Efficient multi-institutional collaboration re-
quires accommodating a variety of code development environments. For
example, the framework must support native and managed processes writ-
ten in C++ and C#.

e Real-time Logging: All results must be recorded to allow for later per-
formance evaluation, without inhibiting real-time operation.

e Simulated Environment: The framework must have the ability to sim-
ulate deployment using recorded videos to enable reliability testing and
algorithm performance evaluation prior to actual deployment.

For these reasons, we selected the open standard Data Distribution Ser-
vice (DDS) middleware [8] to handle interprocess communication and guarantee
compatibility as new components are added to the system. DDS is designed for
real-time applications requiring low latency and high throughput.

Although our system uses shared memory exclusively, the physical trans-
port used by DDS is configured at runtime using transport type-agnostic API
allowing application components to be distributed across multiple machines if
necessary. To minimize communication overhead, DDS contains automatic peer
discovery and peer-to-peer data transfer without needing to run additional mes-
sage brokers or servers. Custom data structures are defined using an interface
description language (IDL) that closely resembles C++ class definitions. These
structure definitions correspond to a common data representation that allows
access from many programming languages including C++, C#, and Java.

DDS uses a loosely-coupled publish-subscribe communication model. In this
model, participating processes contain objects for publishing (writing) and sub-
scribing to (reading) data from a global data space managed by DDS (Figure 6).
The global data space is organized into a number of “topics” defined by a unique
pair of name and IDL-defined data type. To access the global data space, pro-
grams merely inform DDS of the topic name and data types they would like
to read and/or write to; the creation of new topics is handled automatically
by DDS. From a programming perspective, the behavior of a participant in the
publish-subscribe model is independent of other participants. For example, the
process responsible for publishing video frame data does not need to account for
which or how many other processes are reading the data. DDS is configured at
runtime by reading an XML file containing Quality of Service (QoS) policies to
control aspects of how and when data is distributed by the middleware. QoS can
control attributes such as the maximum size of global data space or how much
data for each topic can be available to subscribers to read. These attributes
of DDS help ensure reliability as new components are added while keeping the
framework flexible enough to handle new methods from our research. In addi-
tion, the DDS implementation provided tools for the recording and playback of
DDS communications allowing us to examine not only the re-id results but any
communication within the framework.

Figure 7 illustrates the DDS architecture corresponding to the re-identification
software deployed on a three-camera system at the airport currently installed.

10

DDS Participant

Topic A
Subscriber

Topic A data

1

Topic B
Publisher

Topic B data

DDS Participant 2

Topic A
Publisher

Topic A data

Topic B
Subscriber

Topic B data

DDS Global Data Space

Figure 6: Block diagram showing participating entities in the publish-subscribe communica-
tion model used by DDS.

Each block corresponds to a seperate constantly running process performing
the algorithms described in Section 3. In particular, the processing pipeline

Video Frames

Camera 1
Video

User Interface

Re-ID Results

Candid
Person || Candidates Visual Target & Targets | Feature
Detection Tracking Selection Extraction
Camera 2 Video Frames
Video
Person || Candidates Visual Temporal Feature
Detection Tracking Filtering Extraction
New Target Announcements
LFDA
Camera 3 Videa Frames.
Video
Person [{Candidates Visual Temporal Feature
Detection Tracking Filtering Extraction

Figure 7: Block diagram showing the re-id system architecture, including processes for Can-
didate Detection (green), Candidate Filtering (purple), Feature Extraction (blue), and Re-
Identification (red).

contains the following modules:

1. Candidate Detection: The first module in the processing pipeline pub-
lishes the single frame locations of pedestrians detected in the video source.

11

o Subscribes to: Video frames.
e Publishes: Single frame candidate locations.

2. Candidate Filtering: This module is used for additional processing of
candidates prior to re-id, such as tracking or grouping detections known
to be the same person. By subscribing to new target announcements from
the Re-identification module, this module can also act as a temporal filter
for potential candidates.

o Subscribes to: Video frames (optional); Candidates from Candidate
Detection module or other instances of Candidate Filtering module;
New target announcements from the Re-Identification module (op-
tional).

e Publishes: Candidate and Target locations.

3. Feature Extraction: This module is responsible for preparing potential
candidates and targets for re-id by calculating a vector of feature values
as described in Section 3.2. Since feature extraction is generally the most
computationally intensive task in re-id, it is performed only on the most
promising candidates that have passed the spatial and temporal filtering
in the previous modules.

o Subscribes to: Video frames (optional); Candidates and targets from
Candidate Filtering module.

e Publishes: Candidate and Target locations with identifying feature
vectors.

4. Re-Identification: The last computer vision module is responsible for
generating the final re-id results. It uses the feature vectors calculated
by the previous module to compare the active target with all candidates
from each camera as described in Section 3.2, and provides a sorted list
and difference score for each candidate.

o Subscribes to: Video frames (optional); Candidates and Targets from
Feature Extraction module.

o Publishes: New target announcements; Re-id results.

5. Graphical User Interface: The final module is responsible for visual-
izing the re-id results using images of the target and top candidates as
well as any other desired information regarding candidates and targets
(e.g., video display with candidate bounding boxes). This module does
not publish any data.

o Subscribes to: Video frames; Candidates and Targets from Feature
Extraction module; Re-id results.

5. Data Collection and Ground Truth Generation

To develop the computer vision algorithms and system architecture described
here, we required a comprehensive video footage database with high-accuracy

12

ground truth labels for hypotheses validation, parameter tuning, and perfor-
mance evaluation. In particular, we required accurate bounding boxes for pedes-
trians in thousands of frames of videos from several cameras, and when possible
metadata such as gender, clothing color, motion type, and interactions with
others that might be useful for future analysis.

One strategy to achieve accurately annotated visual content is to divide the
labeling task into many smaller tasks executed by a large number of people en-
listed through, e.g., crowdsourced marketplaces [21, 23]. However, crowdsourc-
ing is not a viable practice for labeling sensitive, proprietary videos. Therefore,
we opted to employ in-house, specially trained personnel to generate reliable
ground truth.

In our case, the limiting factor is the time required for bounding box de-
lineation, requiring up to 3.5 hours to process one video minute for a single
pedestrian without any computational intervention.

For this purpose, we designed a computer-aided ground truthing system
called “Annotation Of Objects In Videos (ANchOVy)”, a toolbox for cost-
effective surveillance footage labeling. ANchOVy’s unified graphical user in-
terface, shown in Figure 8, was designed for an ergonomic, low-latency video
labeling workflow and includes features to safeguard against worker errors (e.g.,

automated label propagation, continuous auto-save function, role-based content
control).

©00 . ANchOVy- ANnotation of Objects in Videos (Version 1.97alpha)
File Object Preferences Experimental Tools

Obiis | Atiies | Arvaions | Soip | [MoviScroen 22 2
22

(=

 edgui 4
iR
S A% &

Figure 8: ANchOVy’s graphical user interface showing pedestrians and their trajectories,
spatial labels (full-body, head, and luggage bounding boxes) as well as other labels.

ANchOVy first automatically extracts short trajectories of moving objects
visible in the video by using a featureless tracking-by-detection method [10]
implemented on graphics processing units [9]. Then, the human worker identifies
and labels an object of interest in a highly sparse set of frames. Next, the
missing labels are automatically inferred by connecting the previously collected
short trajectories using Hankel matrices of the trajectories [5]. The worker

13

inspects the inferred results and can take corrective actions, which will trigger a
recalculation and update using the added label information. This procedure is
repeated until a satisfactory label quality is achieved. Finally, the worker assigns
a unique global identification number to each tracked pedestrian to facilitate
algorithm design and validation for re-identification, as discussed in Section 6.1.

6. Experimental Results

1011612014 11:2405:825

Figure 9: Sample results from the airport human re-identification system. (a) Tagging the
person of interest in camera A, (b) Tracking in camera B, (¢) Tracking in camera C, (d)
Re-identification results (green boxes indicate correct candidates).

In this section we summarize the training of the system and report the
results of a set of experiments using real-world airport videos to evaluate its
overall re-id performance. For these experiments, we chose to use video from
three cameras located in the area between the airport terminal and the parking
garage. Sample images of the camera views are shown in Figures 9a-c. People
coming from the terminal will be seen first in camera A. They then proceed to
camera B (at which point there are stairs and elevators enabling them to enter
or exit the environment). If they continue to move forward, they will eventually
appear in camera C and move into the parking garage.

14

6.1. System Training

Using AnchOvy, we labeled 650 tracks of 188 pedestrians, each identified by a
unique global ID, in multiple image sequences recorded across CLE’s distributed
camera network. The ground truth labeling process produced tightly cropped
images of pedestrians in every twelfth video frame ranging in size from 51 x 30
to 267 x 212 pixels.

The cropped images were then used to train our pedestrian detection and
re-identification algorithms. We grouped the pedestrian images based on their
camera view to train camera-specific decision trees for human detection as de-
scribed in Section 3.1. We also used the ground truth bounding boxes and global
IDs to learn the projection matrix P for the LFDA re-identification algorithm,
as descibed in Section 3.2.

6.2. Performance Evaluation

To evaluate the performance of the system, we deployed it at Cleveland Hop-
kins International airport and ran experiments using live video feeds, recording
the real-time re-identification results. Across approximately 11 hours of run
time, we automatically selected 42 targets in camera A from the output of the
pedestrian detector. Each of these acts as a probe image from which feature
vectors are extracted. After the target leaves camera A, we begin to detect and
track candidates in camera B and C during the following 5-minute period. One
example re-id result is shown in Figure 9d. We display the top 4 candidates to
the user, ranked in descending order of similarity score. In this example, the
target person was ranked second in camera B and third in camera C.

Table 1 summarizes the results. The overall system found 88% of the tar-
gets at rank 10 in camera B and 38% of the targets at rank 10 in camera C.
The relatively poor performance in camera C is caused by failures in the pedes-
trian detector. That is, frequently the true re-appearance of the target was not
detected by the pedestrian detector module. As illustrated in Figure 10, the
number of candidate matching pedestrains provided by the pedestrian detector
in camera C is significantly lower than the number provided in camera B.

Therefore, we also computed the performance results after excluding those
targets without any correct detections in the other cameras. In this case, the
camera C performance is significantly improved (reaching 100% at rank 10 over
this subset). Figure 11 shows cumulative match characteristic (CMC) curves
for each of the two cameras and experimental subsets.

7. Conclusions

We discussed several practical challenges in implementing a real-time re-
identification solution in a mid-sized airport, which might not be typically con-
sidered by academic researchers, and presented initial results from our algorithm
framework tailored to this setting. However, there is still much work to be done,
both in our specific environment, and more generally to make academic re-id
research more closely match real-world scenarios.

15

e
[=]

Gallery Size for Each Subject

ot}
m

w
[

[}
t

Gallery Size

1 1 I I 1 1 1
] a 10 15 20 25 30 35 40 45

Tagged Subject Index

Figure 10: The number of candidates produced by the person detector for the re-id galleries
in camera B and C, as a function of the target index.

CMC Curve of Camera B CMC Curve of Camera C

o
@

In-gallery

o
o

o
=

o
in

Cumulative Accuracy
N >

Cumulative Accuracy

o
w

i i H L L i i H i i i i L L L L L i
5 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 a0

Rank Rank

o
X]

Figure 11: Cumulative match characteristic (CMC) curves corresponding to the experiments
in Table 1.

16

Re-id method | Rank 1 | Rank 5 | Rank 10 | Rank 20
Camera B Default 26.2 61.9 88.1 92.3
In-gallery 28.3 66.7 94.9 100
Camera C Default 14.3 26.2 38.1 38.1
In-gallery 37.5 68.8 100 100

Table 1: Re-identification results for the on-site airport experiment. “Default” indicates the
performance of the overall algorithm (even when the correct candidate does not appear in the
camera B or C gallery due to a failure of the pedestrian detector). “In-gallery” indicates the
performance when we only include targets that have matching images in the camera B and C
galleries.

With respect to our specific environment, we are only at the beginning of
our implementation and testing of the on-site re-id system, following a success-
ful deployment of a system for real-time detection of counterflow through exit
lanes described elsewhere [9, 26]. As discussed in Section 6, the performance
of our deployed re-id algorithm is limited by the quality of the detected human
candidates. To address this issue, we plan to use image edge information [29] to
generate better pedestrian proposals prior to applying the detection algorithm.

We also note that most current human re-id algorithms are focused on the
“single-shot” problem; that is, it is assumed that each person only has one image
available to compute the similarity score. This assumption is mainly motivated
by the limited data available in public re-id benchmark datasets. However, in
real-world scenarios like the one considered here, there is a sequence of images
available for each tracked person, leading to a “multi-shot” case. These images
can be used to build better descriptors and generate more reliable similarity
measurements. Multi-shot information could be used to train a discriminative
model of the target person on-line, improving re-id performance [13]. Our next
step of development is to incorporate multi-shot algorithms in our airport de-
ployment to leverage all the available information about candidates and improve
performance.

The DDS software architecture has allowed our team to successfully evaluate
many different algorithms and system configurations quickly. Since security
procedures prevent remote access to the airport’s camera network, installation
and debugging of the system requires one or more researchers to physically visit
the airport. The application framework has made these trips very efficient,
allowing quick installation and initial testing of new components with almost
no time needed for on-site debugging. We are currently tuning the robust DDS
software architecture to run for days at a time and recover from crashes, and
creating an intuitive user interface that allows the user to easily retain possible
matches and reject others.

We also had the unique opportunity to design a new re-id testbed at the
airport, containing higher-quality digital cameras, positioned as carefully as
possible within security and power constraints to capture a complex branching
re-id scenario (i.e., a passenger exiting the security checkpoint can enter one
of three concourses, after spending an unknown time in a shopping area). We

17

expect this new testbed to generate further challenges from both the research
and practical perspectives.

8. Acknowledgments

This material is based upon work supported by the U.S. Department of
Homeland Security under Award Number 2013-ST-061-ED0001. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either ex-
pressed or implied, of the U.S. Department of Homeland Security. Thanks to
Michael Young, Jim Spriggs, and Don Kemer for supplying the airport video
data. Thanks to Deanna Beirne and Rick Moore for helping to set up and main-
tain the described system, and to Alyssa White for coordinating the ground-
truthing effort. Thanks to Vivek Singh and Arun Inanje of Siemens Corporation,
Corporate Technology, for providing and configuring the system hardware.

References

[1] H.Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features.
In ECCYV, 2006.

[2] L. Bazzani, M. Cristani, and V. Murino. Symmetry-driven accumulation
of local features for human characterization and re-identification. CVIU,
117(2):130-144, 2013.

[3] J. Blitzer, K. Q. Weinberger, and L. K. Saul. Distance metric learning for
large margin nearest neighbor classification. In NIPS, 2005.

[4] K.-W. Chen, C.-C. Lai, P.-J. Lee, C.-S. Chen, and Y.-P. Hung. Adaptive
learning for target tracking and true linking discovering across multiple
non-overlapping cameras. Multimedia, 13(4):625-638, 2011.

[5] C. Dicle, O. I. Camps, and M. Sznaier. The way they move: Tracking
multiple targets with similar appearance. In Computer Vision (ICCV),
2013 IEEE International Conference on, pages 2304-2311. IEEE, 2013.

[6] P. Dollar, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for
object detection. PAMI, 2014.

[7] D. Gray and H. Tao. Viewpoint invariant pedestrian recognition with an
ensemble of localized features. In ECCYV, 2008.

[8] O. M. Group. Data distribution service for real-time systems, 2004.

[9] T. Hebble. Video analytics for airport security: Determining counter-flow
in an airport security exit. Master’s thesis, Northeastern University, 2015.

18

[10]

[11]

[12]

[13]

[14]

[18]

[19]

[20]

[21]

[22]

23]

[24]

J. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the circu-
lant structure of tracking-by-detection with kernels. In proceedings of the
European Conference on Computer Vision (ECCV), 2012.

0. Javed, K. Shafique, and M. Shah. Appearance modeling for tracking in
multiple non-overlapping cameras. In CVPR, 2005.

Y. Li, Z. Wu, S. Karanam, and R. Radke. Real-world re-identification in
an airport camera network. In ACM/IEEE International Conference on
Distributed Smart Cameras (ICDSC), 2014.

Y. Li, Z. Wu, and R. Radke. Multi-shot re-identification with random-
projection-based random forests. In Winter Conference on Applications of
Computer Vision (WACYV), 2015.

D. G. Lowe. Distinctive image features from scale-invariant keypoints.
1JCV, 60(2):91-110, 2004.

B. D. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. In Imaging Understanding Workshop, 1981.

A. Mignon and F. Jurie. PCCA: A new approach for distance learning from
sparse pairwise constraints. In CVPR, 2012.

S. Pedagadi, J. Orwell, S. Velastin, and B. Boghossian. Local fisher dis-
criminant analysis for pedestrian re-identification. In Computer Vision and
Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3318-3325.
IEEE, 2013.

B. Prosser, W.-S. Zheng, S. Gong, T. Xiang, and Q. Mary. Person re-
identification by support vector ranking. In BMVC, 2010.

E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine
learning approach to corner detection. PAMI, 32(1):105-119, 2010.

W. R. Schwartz and L. S. Davis. Learning discriminative appearance-based
models using partial least squares. In SIBGRAPI, 2009.

A. Sorokin and D. Forsyth. Utility data annotation with amazon mechan-
ical turk. Urbana, 51(61):820, 2008.

C. Stauffer and W. E. L. Grimson. Adaptive background mixture models
for real-time tracking. In CVPR, 1999.

C. Vondrick, D. Ramanan, and D. Patterson. Efficiently scaling up video
annotation with crowdsourced marketplaces. Computer Vision-ECCV
2010, pages 610-623, 2010.

X. Wang, K. Tieu, and W. E. L. Grimson. Correspondence-free activity
analysis and scene modeling in multiple camera views. PAMI, 32(1):56-71,
2010.

19

[25]

[26]

[27]

[28]

[29]

Z. Wu, Y. Li, and R. Radke. Viewpoint invariant human re-identification
in camera networks using pose priors and subject-discriminative features.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014.

Z. Wu and R. J. Radke. Improving counterflow detection in dense crowds
with scene features. Pattern Recognition Letters, 44:152-160, 2014.

F. Xiong, M. Gou, O. Camps, and M. Sznaier. Person re-identification
using kernel-based metric learning methods. In Computer Vision-ECCV
2014, pages 1-16. Springer, 2014.

W.-S. Zheng, S. Gong, and T. Xiang. Person re-identification by proba-
bilistic relative distance comparison. In CVPR, 2011.

C. L. Zitnick and P. Dollar. Edge boxes: Locating object proposals from
edges. In ECCV. 2014.

20

