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Abstract

This paper proposes to model an action as the output of a sequence of atomic

Linear Time Invariant (LTI) systems. The sequence of LTI systems generat-

ing the action is modeled as a Markov chain, where a Hidden Markov Model

(HMM) is used to model the transition from one atomic LTI system to another.

In turn, the LTI systems are represented in terms of their Hankel matrices.

For classification purposes, the parameters of a set of HMMs (one for

each action class) are learned via a discriminative approach. This work

proposes a novel method to learn the atomic LTI systems from training data,

and analyzes in detail the action representation in terms of a sequence of Hankel

matrices. Extensive evaluation of the proposed approach on two publicly avail-

able datasets demonstrates that the proposed method attains state-of-the-art

accuracy in action classification from the 3D locations of body joints (skeleton).
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1. Introduction

In recent years, a large portion of the research in computer vision has focused

on the problem of action recognition and modeling. Detection, recognition and

analysis of actions is of great interest in several application domains such as

surveillance [1], [2], [3], [4], human-computer interaction [5], assistive technolo-5

gies [6], sign language [7], [8], [9], and, more recently, computational behavioral

science [10], [11] and consumer behavior analysis [12].

The wide diffusion of cheap depth cameras, and the seminal work by Shotton,

et al. [13] for estimating the locations of the joints of a human body from depth

maps, have given new stimulus to the research in 3D action classification both by10

quickening the development of novel applications, and by providing a setting to

test new ideas and frameworks. Therefore, very recently, we have seen a prolifer-

ation of works introducing novel body pose representations for action recognition

given depth maps and/or skeleton data [14], [15], [16], [17], [18], [19], [20].

In this paper, we propose to represent an action as a series of movements15

to exploit their temporal structure while discriminating among different action

classes. As an example, consider the action of handshaking which can be mod-

eled by the following ordered sequence of movements: moving the whole body

to approach the other person, raising the arm, and shaking the hand. Further-

more, each of these movements can be represented as a sequence of observations20

(for example a sequence of body poses) which are characterized by their own

dynamics. Therefore, an action can be represented in terms of a “sequence of

simpler dynamics”.

This reasoning leads to the idea that an action should be modeled by a hier-

archical dynamical model, such as a mixture of Hidden Markov Models (HMMs)25

[21], coordinated mixture of factor analyzers [22] or switching models [23]. How-

ever, the burden of learning the model parameters and the size of the required
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training set may limit the applicability of these methods.

Here, we propose to approximate the above mentioned complex hierarchi-

cal dynamical model by adopting a simpler representation for the movements.30

In particular, we focus our attention on the switching of the dynamics across

time. For this purpose, we represent movements using body motion templates.

A body motion template may be either an ordered set of trajectories (i.e. tra-

jectories of body parts such as hands, arms, legs, head, torso) or a sequence of

frame descriptors (based on bag-of-words, oriented flow, dense trajectories, etc.)35

within a temporal window. For simplicity, in the remainder of the paper we will

assume that a body motion template is an ordered set of trajectories of 3D body

joints within a temporal window. However, our framework may be used with

other feature representations as long as they have an ordering relation.

Fig. 1 illustrates the basic idea of our approach. An action is a temporal40

series of body motion templates (movements). Each body motion template is a

series of raw observations in a temporal window (eventually of varying duration)

which is characterized by a specific dynamic. Thus, we aim at decomposing an

action into sub-trajectories that are modeled as the outputs of a sequence of

atomic linear time invariant (LTI) systems, using an HMM to model the transi-45

tions from one atomic LTI system to another. Furthermore, each body motion

template is described by means of a truncated Hankel matrix (Hankelet) [24],

which embeds the parameters of the LTI system [25]. In summary, an action

is modeled by an HMM where the observations are Hankel matrices, computed

in a sliding window, and where each hidden state represents an LTI system for50

which only a Hankelet is known. Finally, for classification purposes, we train a

set of HMMs (one for each action class) using a discriminative approach.

Fig. 2 contrasts traditional HMM representations against our approach. In-

stead of learning the parameters of a switching HMM (Fig. 2(a)), we consider

a probabilistic switching LTI system (Fig. 2(b)) where an HMM is used over55

the Hankel matrices of the systems, avoiding the need of performing any system

identification (Fig. 2(c)).

The results presented here are an extension of our preliminary work [26]. In
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Figure 1: “Tennis serve” action from the MSRA3D-Action dataset. An action is a sequence of

body motion templates (movements). Each body motion template is, in the case illustrated in

this figure, a sequence of 3D Joints Trajectories characterized by their dynamics. The figure

shows a sequence of only 5 body motion templates (sub-sampled from the original sequence)

and expands only two of them for clarity.

particular, in this paper:

• we account for the learning of the atomic LTI systems via a discriminative60

method that encourages correct predictions of the HMMs;

• we provide a deeper description of our discriminative learning approach

in relation to former models;

• we present an extensive validation of our Hankelet-based action represen-

tation for different parameter settings.65

The paper is organized as follows: in Section 2 we review previous work on

action recognition and modeling, and on discriminative learning of HMM pa-

rameters; in Section 3 we present our Hankelet-based action representation; in

Section 4 we explain our action model and describe our classification and LTI

inference methods; in Section 5 we describe the discriminative learning of the70

model parameters and of the atomic LTI systems; in Section 6 we present exper-

imental results on publicly available datasets and analyses of the performance

of our technique for varying settings and parameters of the Hankelet-based rep-
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(a) Switching HMM (b) Switching LTI system

(c) HMM of latent LTI systems

Figure 2: Fig. 2(a) shows an ideal model where the action is modeled as a switching HMM

(similar to [21]). In Fig. 2(b), the action is modeled as a switching LTI system. This way we

can represent a sub-trajectory by its Hankel matrix, and the action is modeled by a simple

HMM (Fig. 2(c)) where the latent variables LTI represent atomic LTI systems, while the

observed variables H are Hankel matrices.

resentation. Finally, in Section 7 we present conclusions and outline future

research directions.75

2. Related Work

The literature about action recognition and time series modeling is very ex-

tensive. Here, we focus on three main aspects of the methods at the state-of-the-

art: action representation, especially for 3D data, modeling of time-varying dy-

namics, and discriminative learning of parameters. We refer the reader to the fol-80

lowing surveys for more general discussions on these topics: [27], [28], [29], [30], [31].

2.1. Action Representation

Most approaches for human action recognition in still images and RGB

video [29] attempt to extract features that may be correlated with the human
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body pose (human body pose represents the configuration of body parts includ-85

ing head, arms, and legs). Descriptors such as Histogram of Oriented Gradients

(HOG) [32], 3D-SIFT [33], Local Binary Pattern (LBP) [34] have been widely

used in the literature. Often, a bag-of-words approach is used to compute a

histogram of visual words based on a dictionary of local features [35].

Good motion representations can help to discriminate among actions dur-90

ing recognition. Several techniques have tried to combine body pose repre-

sentation with motion information. Recently, Spatio-Temporal Interest Points

(STIPs) [36] and Dense Trajectories (DT) [37, 25], jointly with Motion Bound-

ary (MB) [38], have proved to increase accuracy of action recognition in video

sequences.95

Since the introduction of depth cameras and the work by Shotton, et al. [13]

for estimating the body part locations in depth maps, several researchers have

focused on the problem of recognizing actions from depth maps and/or 3D

skeletons of the body.

A depth map stores the distance of each point in the scene to the camera.100

This allows reasoning about body surfaces and shapes across time. Li et al. [39]

proposed to use an action graph where each node is a bag of 3D points that

encodes the body pose. In Wang et al. [19], a 3D action sequence is treated

as a 4D shape and a Random Occupancy Patterns (ROP) feature is extracted.

Sparse coding is used to encode only the features that contain information use-105

ful for classification purposes. In Vieira et al. [40], space and time axes are

divided in cells, and space-time occupancy patterns are computed to represent

depth sequences. Oreifej et al. [16] describe the depth sequence as histograms of

oriented surface normals (HON4D) captured in the 4D volume, based on depth

and spatial coordinates.110

The main difficulty of working directly with 3D skeleton data arises from

inaccuracies or failures of the skeleton estimation method. Moreover, “one of

the biggest challenges of using posed-based features is that semantically similar

motions may not necessarily be numerically similar” [41]. Most of the research

using only 3D skeleton data tries to extract features to represent the correlation115

6



among the locations of the joints. In [15], the body pose is represented by

concatenating the distances between all the possible pairs of the joints in the

current frame, the distances between the joints in the current frame and the

ones in the previous frame, the distances between the joints in the current

frame and in a neutral pose (computed by averaging the initial skeletons of all120

the actions). Principal component analysis (PCA) is applied for dimensionality

reduction providing a descriptor called EigenJoints.

In Xia et al. [14], a histogram of the locations of 11 manually selected 3D

skeleton joints is computed to get a compact body pose representation that is

invariant to the use of left and right limbs (Histogram of 3D Joints (HOJ3D)).125

Linear Discriminant Analysis (LDA) is used to project the histograms and com-

pute the K discrete states of the HMM classifier. In [42], each action is rep-

resented by spatio-temporal motion trajectories of the joints. Trajectories are

represented as curves in the Riemannian manifold of open curve shape space,

and a dynamic programming-based elastic distance is used to compare them.130

Classification is performed by KNN on the Riemannian manifold.

Due to the difficulty of achieving high accuracy with just 3D skeleton data [20],

other approaches combine skeleton data with other sources of information (depth

maps or RGB video). In Wang et al. [20], depth data and the estimated 3D

locations of the joints are used to compute the local occupancy pattern (LOP)135

feature. The Fourier temporal pyramid is used to capture the temporal structure

of the action. Data mining techniques are used to discover the most discrim-

inative actionlets and a multiple kernels learning approach is used to weight

the actionlets. Sung et al. [43] combine HOG on RGB and depth data, hand

positions, body pose and motion features from skeleton data. Then, a two-layer140

maximum-entropy Markov model is adopted for classification. In [44] the au-

thors fuse skeleton information and STIPS within the random forest framework

to perform feature selection and action classification.

In this paper, we only use the 3D locations of the joints in skeleton data. We

adopt a Hankelet-based representation [24] to describe body motion145

in a sliding window, and a set of HMMs to perform action classification.
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2.2. Modeling of Time Series

Our approach is related to both linear parameter varying model identifica-

tion [45] and switched system identification [46]. In linear parameter varying

models, the parameters of each autoregressive model may change over time150

based on a scheduling variable. Our method may be considered as a discretiza-

tion of linear parameter varying models; we model the switching of the LTI

systems as a Markov process and, instead of estimating the scheduling vari-

able, we infer the atomic LTI system that may have generated the given ob-

servations. In this sense, our method is more similar to piecewise models and155

Markovian jump linear models [46], [47], [48] where there is a stochastic process

that regulates the switching from one LTI system to another. Unlike previous

methods [47], [48], our goal is not that of segmenting the sequence as outputs

of different LTI systems; instead, we parse the sequence with a sliding window

of fixed duration, and model probabilistically the switching among the atomic160

LTI systems to capture the temporal structure of the whole action.

To associate output measurements with a generating LTI system, we could

apply system identification techniques to estimate the parameters of the LTI

system, as in [49]. However, trajectories produced by a dynamical system can

be also represented through a Hankel matrix. The Hankel matrix embeds the ob-165

servability matrix of the LTI system, and it is invariant to affine-transformations

of the trajectory points [24]. Hankel matrices have been successfully used in pre-

vious works on action recognition [24], tracking [50] and dynamic textures [49].

In [24], a bag of dynamical models is used for action recognition in RGB video.

The method extracts dense trajectories to represent body motion. The trun-170

cated Hankel matrices (Hankelets) associated with the detected trajectories are

used to learn a dictionary of Hankelets. A histogram of Hankelets is computed

to represent each action instance and train a SVM. In such a method, the tem-

poral structure of the action and the switching among LTI systems are not

considered.175

In our approach we use the space of Hankel matrices as an intermediate space

where it is possible to compare the Hankelet-based representations of both body
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motion templates and atomic LTI systems. We model the transitions between

LTI systems means of an HMM. In this sense, there is an interesting connection

between our work and the work of [51]. In [51], each video sequence is associated180

with a dynamical model. Then, a metric is learned in order to optimally classify

these dynamical models. In contrast, we represent a video as a sequence of

dynamical models and learn the parameters of an HMM that may regulate this

sequence of atomic models.

2.3. Discriminative Learning of Parameters185

Among the various statistical learning approaches, we can distinguish be-

tween two categories: generative and discriminative learning methods [52]. The

former schema aims at estimating the parameters of the probability distribu-

tion of the data based on the maximum likelihood or the maximum a posteriori

principles. In contrast, discriminative approaches attempt to optimize a scoring190

function on the available training samples and the classifier’s output. Such a

scoring function is defined based on criteria that are directly linked with the

classification purpose, such as conditional maximum likelihood or maximum

mutual information [53], [54], empirical risk minimization [55] and large margin

estimation [56].195

One of the most used discriminative models for time series is the Conditional

Random Fields (CRF) [57] model, which has proven to be successful for labeling

tasks but, in general, requires a fully annotated training set. Therefore, Quat-

toni et al. [58] proposed Hidden Conditional Random Fields (HCRF) where the

states of a temporal sequence are hidden but depend on the class. In the HCRF200

model, all classes share the same state space. The class label is inferred by

considering the compatibility of the appearance features with the hidden states,

the compatibility of the couple of states in the chain, and the compatibility

of the inferred states with the class labels. Learning of the parameters for a

chain-based HCRF requires inference of the hidden states, which can be solved205

via belief propagation.

The main difficulties in discriminative training of dynamical models arise
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when hidden variables are present. In general, hidden variables make the ob-

jective function non-convex and increase the complexity of the optimization

problem [58]. By borrowing ideas from Latent variable Support Vector Ma-210

chine (LSVM) [59] and structural SVM [60], Wang and Mori [61] developed

Max-Margin HCRF (MMHCRF) for human action recognition in RGB video

sequences. Using this approach, learning of the parameters requires a two step

procedure: in the first step, given the currently estimated parameters, inference

of the hidden states is performed by linear programming for each sample in the215

training set; in the second step, given the sequences of hidden states, multi-class

SVM is learned in the dual space by solving a quadratic programming problem.

The optimization is carried out only on the correct labeling and on the most

violated constraints.

HMMs have been widely used for modeling time series. In particular, they220

have been widely used for action recognition [14], [62], [63], [64], [65], [66]. The

standard generative learning scheme for HMMs is the well-known Baum-Welch

algorithm [67], which is based on expectation-maximization to alternate be-

tween inference of hidden states and maximum likelihood estimation of the

parameters. Due to the success of discriminative learning approaches, several225

researchers [68], [69], [70], [71] have attempted to learn the parameters of Markov

networks in a discriminative way, especially in speech recognition.

In this paper, we train a set of HMMs (one for each action class) using

a discriminative training approach. We define a loss function that measures

the misclassification error as a “distance” between the correct labeling and the230

most competitive but wrong class label. During optimization, the method tries

to enforce a “large margin” among the HMMs’ decision boundaries.

3. Hankelet-based Representation

We represent an action as a sequence of body motion templates, where a

template is defined as a set of feature trajectories in a temporal window of235

τ frames. In particular, we consider a temporal sequence [yo, . . . , yτ ],
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where yt is a vector of the concatenated 3D locations of body joints in

the skeleton at time t. As LTI systems are universal approximators

[47], the temporal sequence can be regarded as the output of an LTI

system of unknown parameters.240

The state and measurement equations of LTI systems are linear, where the

matrices A and C are constant over time, and wk ∼ N(0, Q) is uncorrelated

zero mean Gaussian measurement noise:

xk+1 = A · xk + wk;

yk = C · xk. (1)

In these equations, xk ∈ Ru is the u-dimensional hidden state of the LTI system,

while yk ∈ Rv is the v-dimensional measurement.245

We can describe the trajectory produced by a dynamical system through its

Hankel matrix. Given a sequence of output measurements [yo, . . . , yτ ] from (1),

its associated block-Hankel matrix is

H̃ =


y0, y1, y2, . . . , ym

y1, y2, y3, . . . , ym+1

. . . . . . . . . . . . . . .

yn, yn+1, yn+2, . . . , yτ

 , (2)

where n is the maximal order of the system, τ is the temporal length of the

sequence, and it holds that τ = n+m− 1.250

The Hankel matrix embeds the observability matrix Γ of the system, since

H̃ = Γ ·X, where X is the sequence of hidden states of the LTI system. There-

fore, H̃ provides information about the dynamics of the temporal sequence.

To compute the Hankelet, we first center the sequence by sub-

tracting its average, then we build the Hankel matrix and normalize

it as in [24]:

H =
H̃√

||H̃ · H̃T ||F
. (3)

Based on the above definition, we represent an action sample as a sequence

of Hankelets computed in a sliding window of duration τ .255
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To compare two Hankelets Hp and Hq, we adopt the same dissimilarity score

introduced in [24] and defined as follows:

d(Hp, Hq) = 2− ||Hp ·HT
p +Hq ·HT

q ||F . (4)

We highlight that Eq. 4 is a surrogate used to estimate the subspace angle

between the spaces spanned by the columns of the Hankel matrices and it does

not define a distance. Nonetheless, this score conveys the degree to which two260

Hankelets may correspond to the same dynamical system [24], and therefore

we assume this score represents the degree to which two trajectories have been

produced by the same LTI system.

4. Hankelet-based HMM

As shown in Fig. 2(c), our switching dynamical system model reduces to an265

HMM where the hidden variable LTI represents the atomic linear time invariant

system that has generated the current trajectory. Each observed trajectory is

represented by the corresponding Hankelet H. For each class, we learn a set

of M atomic LTI systems (as will be described in Sec. 5.1). Each atomic LTI

system is modeled by means of the Hankelet S of an exemplar output sequence270

that the system has produced. Therefore the set of atomic LTI systems is

represented by a set of Hankelets {Si}Mi=1.

The probability that a given sequence of measurements is produced by an

LTI system is modeled by the following exponential distribution:

p(H|S) = λ · e−λ·d(H,S) (5)

where H is the Hankelet corresponding to the given sequence of measurements,

S is the Hankelet used for representing the atomic LTI system, d(H,S) is the

dissimilarity score in Eq. (4), λ is the parameter of the exponential distribution.275

The switching process that generates an action is assumed to be a Markovian

process and is modeled by an HMM. This HMM is characterized by a stochastic

transition matrix T such that T (i, j) = P (St = Sj |St−1 = Si). We also define
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Input : {Ht}t=Tt=0 test sequence;

{ΛC}C=N
C=1 , {TC}C=N

C=1 , {πC}C=N
C=1 parameters of the HMMs;

{Sc,i},c=N,i=Mc=1,i=1 state space

Output: CP predicted label

for c← 1 to N do

for i← 1 to M do

for j ← 1 to T do

Dc(i, j)← d(Sc,i, Hj) (eq. 4);

end

end

end

for c← 1 to N do

NLL(c)←applyViterbi(Dc,Λc, T c, πc)

end

CP ← argmin(NLL)
Algorithm 1: Inference of Action-Class

a prior probability π such that π(i) = P (S0 = Si) is the probability that the

measurement in the first temporal window (t = 0) has been generated by the280

i-th atomic LTI model.

The joint probability of a sequence of N observed Hankelets H = {Ht}t=Nt=0

and the sequence of generating LTI systems represented by their corresponding

Hankelets S = {St}t=Nt=0 is:

p(H,S|T, π,Λ) =

t=N∏
t=0

p(Ht|St) ·
t=N∏
t=1

P (St|St−1) · π(S0) (6)

where Λ = {λS} is the set of parameters λ associated with each state.

4.1. Inference and Classification

Given an action model described by parameters {ΛC , TC , πC}, where C is

the label of the action to which the model refers, the inference of the sequence285
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Input : {λs}Ms=1, T , π param. of the C-th HMM;

D score matrix of N observed Hankelets to M states

Output: NLL negative log-likelihood;

{St}t=Nt=0 inferred sequence of states

for i← 1 to M do

%% Compute observation log-likelihood;

for j ← 1 to N do

logPH|S(i, j)← −λi ·D(i, j) + log λi ;

end

%% Initialize joint log-likelihood;

logPH,S(i, 1)← logPH|S(i, 1) + log π(i);

end

%% Do dynamic programming;

for j ← 2 to N do

for i← 1 to M do

logPH,S(i, j)← max
h
{logPH,S(h, j−1)+log T (h, i)}+logPH|S(i, j)

;

bestState(i, j)← argmax
h
{logPH,S(h, j − 1) + log T (h, i)};

end

end

%% Infer best state-path;

NLL← −max
h
{logPH,S(h, T )};

Compute inferred sequence of states {St}t=Tt=0 by back-tracking;

Algorithm 2: applyViterbi (Decoding of the observed Hankelet sequence)
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of LTI-systems is performed via the Viterbi algorithm [72]. This well-known

algorithm is based on Dynamic Programming and attempts to maximize the log-

likelihood of the joint probability of the states and the observations sequentially.

The inference of which label should be assigned to a sequence of Hankelets

H = {Ht} is performed via maximum likelihood. In practice, the predicted

label CP is computed solving:

CP = min
C
{−max

S
log p(H,S|TC , πC ,ΛC)}. (7)

Then, the label of the model providing the highest likelihood is assigned to the

sequence of observations. S = {St} is the best sequence of hidden states inferred290

by the Viterbi algorithm.

Algorithm 1 shows how the classification of an input Hankelet sequence is

performed. The Viterbi algorithm is applied N times, once for each action class.

For completeness, we report in Algorithm 2 the Viterbi algorithm for infer-

ring the sequence of LTI systems that generated the observed sequence and the295

negative log-likelihood.

5. Discriminative Training of HMMs

Our discriminative learning procedure learns the parameters of all the HMMs

simultaneously by encouraging correct predictions and penalizing the incorrect

ones based on the values of the negative log-likelihood provided by the models.300

Based on Eq. 6, the negative log-likelihood provided by an HMM for a

sequence of Hankelets may be written as:

g(H) = − log(p(H,S|T, π,Λ)) =

−
∑t=N
t=0 log(p(Ht|St))−

∑t=N
t=1 log(P (St|St−1))− log(π(S0)) (8)

where S = {St} is computed by the Viterbi algorithm as

S = argmax
S

p(H,S|T, π,Λ). (9)

The decision about which label to assign to H is taken by maximum likeli-

hood as detailed in Eq. 7. Therefore, if the sample belongs to the k-th class, to305

15



obtain a correct prediction we need to have:

gk(H) < min
j 6=k

gj(H) (10)

where superscripts indicate the class to which the negative log-likelihood refers.

The difference δg(H, k, j) = gk(H)−min
j 6=k

gj(H) represents the distance between

the correct model and the most competitive but incorrect one, and can be

interpreted as the margin of the classifier. Minimizing δg over the whole training310

set corresponds to increasing the inter-class distances of the classifier. In case of

a correct prediction, then δg(H, k, j) < 0. We can enforce a large negative log-

likelihood difference by requiring that δg(H, k, j) < −M where M is a positive

constant value (we set M to 1).

For this purpose, in our optimization problem, we adopt a hinge loss function

defined as:

loss(H) = max{0, gk(H)−min
j 6=k

gj(H) +M}. (11)

Whenever this loss is greater than 0, the prediction is incorrect or the achieved315

margin is not large enough. In both cases, an update of the model parameters

is required.

In our formulation, the optimization involves hidden variables, which makes

the problem non-convex as in other related frameworks such as [58], [61]. In the

HCRF [58], classification is based on the conditional likelihood P (y|H) where y320

is the class-label. This conditional likelihood is computed by summing P (S, y|H)

over all the possible state paths. In our discriminative HMMs, the classification

is based exclusively on the optimal state path S and on the maximum joint

probability P (S,H|y). The main difficulty arises in jointly estimating the opti-

mal state path and learning the parameters. In this sense, we take an approach325

that is analogous to the approach taken in [59] and [61] and, at each iteration,

we adopt a coordinate descent approach. In practice, we optimize our objective

function in two steps:

1. Holding the parameters of the model fixed, we infer the optimal path S

for each sample and for each class, and we store the paths of the correct330

model and the most competitive but incorrect one;
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2. Holding the sequences of hidden variables (paths), we correct the model

parameters by minimizing the loss function.

In our formulation we only select the most competitive but incorrect model

by taking the minimum of the negative log-likelihood over all the incorrect335

models

Whilst our model is not a structural SVM, our adopted strategy has an

analog in structural learning [60] where the optimization is carried out on the

set of most violated constraints. In our method, only the sequences for which the

models do not achieve a large margin contribute to the parameter refinement.340

5.1. Learning of atomic LTI systems

The state space, that is the set of atomic LTI systems, is initialized by

computing K clusters per class via K-medoids.

In our preliminary work [26], the atomic LTI systems were not updated

during the training procedure. When inferring the state-paths given the correct345

class-label for all the sequences, we obtain a partition of the Hankelets into

clusters (state-clusters), each one associated with a state. We empirically found

that updating the state space with the medoids of these clusters does not

improve the final classification accuracy [26]. Indeed, this strategy does not

ensure that the cumulative loss function decreases, and there is no guarantee350

that the optimization procedure will converge towards a local minima.

In this paper, we retrain the state space and select the atomic LTI systems

in such a way to encourage correct predictions of the classifier. We consider the

Hankelets of the correctly classified sequences within a state-cluster as candidate

representations of the atomic LTI systems.Ideally, we would like to find355

a joint set of M states for each class that decreases the loss on the training set.

However, this problem has an exponential complexity. Therefore, we apply a

greedy strategy where we re-estimate one state at a time. For each state Si and

for each candidate Hankelet Cj , we compute the cumulative loss on the whole

training set on the state space Cj ∪ {Sk}k 6=i. If this loss is lower than the loss360

computed on the initial state space, we accept the change; otherwise, we reject
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the candidate Hankelet. To further reduce the computational complexity of the

method, we only consider P random candidates at each step, chosen within the

state-cluster.

5.2. Implementation Details365

In contrast to the HCRF model, in the HMM the parameters of the model are

subjected to constraints. In particular, the prior parameters must be positive

and sum to 1; the transition probability parameters must be positive and must

form a stochastic matrix, which means that they must sum 1 per row (each

row of T represents P (St|St−1) for a given St−1). Moreover, considering the370

emission probability defined by Eq. 5, namely an exponential probability density

function, the parameters Λ must be positive.

We neglect the constraints on Λ (see [73], page 6), and enforce that these

parameters assume a value greater than 0.

As for the priors, we make the following assumption:

π(S) =
π̃(S)∑
S π̃(S)

. (12)

When computing the log-likelihood we consider:

log(π(S)) = log(π̃(S))− log(
∑
S

π̃(S)). (13)

While π(S) must be positive and sum to 1, we do not have any constraints

on log(π̃(S)). Therefore, we redefine the variables in our optimization problem

as follows:

βS = log(π̃(S)), (14)

so that

log(π(S)) = βS − log(
∑
S

eβS ). (15)

Similar considerations hold also for the parameters T (S, S′). Therefore, we

define the following variable

αS,S′ = log(T̃ (S, S′)), (16)
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such that

log(T (S, S′)) = αS,S′ − log(
∑
S

eαS,S′ ). (17)

With these variable re-definitions, the original constrained optimization prob-375

lem becomes an unconstrained one.

Our cumulative loss over all the training samples is a non-convex func-

tion. We use gradient descent to minimize the objective function by adopting a

quasi-Newton strategy with limited-memory BFGS updates. We adopt a block-

coordinate descent approach such that the optimization is carried out on the380

parameters Λ, T and the prior π in turn.

Algorithm 3 shows the pseudo-code for our training procedure. After initial-

izing all the models with the same parameters (uniform distributions for T and π

and 1 for λ), the method iteratively estimates the best set of atomic LTI systems

by means of the function est states() (see Sec. 5.1), and minimizes the objec-385

tive function f(·) on each block of variables. The function check convergence()

checks if some convergence criterion is met (no significant changes in the esti-

mated parameters).

Algorithm 4 summarizes the main steps to evaluate the cumulative loss

function over the training set. For each sample, it computes the negative log-390

likelihood of the correct model and of the most likely but incorrect model. This

is achieved by applying the Viterbi algorithm. If the loss is positive, then the

models have produced a wrong prediction or the achieved margin is not large

enough; therefore, the gradients are accumulated and returned to the L-BFGS

algorithm to update the parameters.395

6. Experimental Results

We evaluated our method on two publicly available datasets: MSRA3D [20]

and UCF [74]. We report both the overall classification accuracy and the average

per-class classification accuracies over 10 runs. The overall accuracy is computed

as percentage of correctly classified test samples. The per-class accuracies are400

computed as percentage of correctly classified test samples within each class.
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Input : {Yi}Wi=1: training set of Hankelet sequences;

labels: action-class for each training sequence;

Output: {Λc}Nc=1, {T c}Nc=1, {πc}Nc=1 parameters of the HMMs;

{Sc,i}N,Mc=1,i=1 state space

%% Parameter initialization;

for c← 1 to N do

λc ← all-ones vector of dimension M ;

T c ← M x M stochastic matrix with uniform distribution on each

row;

πc ← uniform distribution over the M states;

end

iter ← 1;

converged ← false;

while iter < Max Iter & !converged do

%% Re-train States;

{Sc,i}N,Mc=1,i=1 =est states({Λc}Nc=1, {T c}Nc=1, {πc}Nc=1, {Yi}Wi=1,labels);

%% Optimize parameters ;

[{Λc}Nc=1, {T c}Nc=1, {πc}Nc=1]←

argmin f({Yi}Wi=1, labels, {Λc}Nc=1, {T c}Nc=1, {πc}Nc=1, {Sc,i}
N,M
c=1,i=1);

converged ← check convergence({Λc}Nc=1, {T c}Nc=1, {πc}Nc=1);

iter ← iter + 1;

end

Algorithm 3: Discriminative learning of the Parameters

In our experiments we only used the body skeletons without performing

any pre-processing of the data; such data are corrupted by various levels of
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noise/failures of the skeleton estimation method. This affects, in general, the

recognition accuracy.405

Each dataset has its own recommended evaluation protocol and data split-

ting, which we briefly describe below.

MSRA3D: The MSRA3D dataset 2 provides both skeleton and depth data

(taken at about 15 fps). The dataset provides the skeleton (20 joints) for 20

actions, performed between 2 to 3 times by each of 10 subjects. During data410

collection, the subjects were facing the camera. The actions cover various move-

ments of arms, legs, torso and their combinations. If an action is performed by

a single arm or leg, the subjects were advised to use their right arm or leg.

We use the 3D coordinates from 557 sequences. The range of the lengths

of the sequences is [13, 76], with an average duration of 39.6 ± 10. We use the415

same experimental setting reported on the authors’ website: 10 sequences have

been filtered out because of the excessive noise on the skeletons; the splitting

of the data in training and test set is as follows: subjects 1, 3, 5, 7, and 9 for

training, the others for test.

This dataset has been extensively adopted in the literature. We have found420

two main evaluation protocols used with this dataset: MSRA-3D Protocol

1 and MSRA-3D Protocol 2. We report experimental results for both of

these evaluation protocols.

• MSRA-3D Protocol 1. The first protocol consists of testing over the

whole set of 20 classes: high arm wave (HAW), horizontal arm wave425

(HoW), hammer (H), hand catch (HCa), forward punch (FP), high throw

(HT), draw x (DX), draw tick (DT), draw circle (DC), hand clap (HCl),

two hand wave (2HW), side-boxing (SB), bend (B), forward kick (FK),

side kick (SK), jogging (J), tennis swing (TSw), tennis serve (TSe), golf

swing (GS), pickup and throw (PT).430

• MSRA-3D Protocol 2. The second evaluation protocol splits the ac-

2http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/
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tions into 3 overlapping subsets of 8 classes each. The first action set

(AS1) includes the actions horizontal arm wave, hammer, forward punch,

high throw, hand clap, bend, tennis serve, pickup and throw. The second

action set (AS2) includes high arm wave, hand catch, draw x, draw tick,435

draw circle, two hand wave, forward kick, side boxing. The third action set

(AS3) includes high throw, forward kick, side kick, jogging, tennis swing,

tennis serve, golf swing, pickup and throw. The AS1 and AS2 sets group

actions that require similar movements, while the AS3 set groups more

complex actions.440

UCF: The UCF dataset 3 provides only the skeleton data. The framerate

for data acquisition is unknown. The dataset provides the skeleton (15 joints)

data for 16 actions performed 5 times by 16 individuals. There are 1280 action

samples are in total with a temporal duration that ranges in [27, 229], with

an average length of 66 ± 34 frames. Each action starts and ends from/to a445

resting pose. We used the 3D coordinates of the locations of the body joints.

The actions in this dataset are: balance, climbladder, climbup, duck, hop, kick,

leap, punch, run, stepback, stepfront, stepleft, stepright, twistleft, twistright,

vault. We adopted the suggested evaluation protocol, which is a 4-fold cross

evaluation[74].450

6.1. Baselines and Parameter Initialization

The parameters of our discriminative HMM (DHMM) classifier were initial-

ized as follows: the parameters λ were set to 1, the transition probabilities and

the prior probabilities were initialized to uniform distributions. Therefore, all

the HMMs are the same at the beginning of the training. In contrast to our455

earlier work [26], in this paper we train HMMs with a different state space. This

largely reduces the number of parameters and speeds-up the training procedure.

The atomic LTI systems (state space) were initialized by K-medoids.

3http://www.cs.ucf.edu/ smasood/research.html
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We compare our method with two baselines: a standard HMM classifier

(SHMM) where a set of HMMs (one for each action class) has been trained460

using the Baum-Welch algorithm, and an HCRF. For SHMM and DHMM, the

state space was initialized in the same way.

The standard HCRF formulation was modified in such a way that each

hidden state refers to an atomic LTI system. In practice, the input for the

HCRF is the sequence of dissimilarity scores between the observed Hankelet465

and the states. The total number of states for HCRF is 8 times the number of

classes.

While we can employ the same parameter initialization of our method for

the SHMM, we have been forced to initialize the HCRF parameters randomly.

Indeed, as the classes share the state parameters, a uniform initialization does470

not allow the model to differentiate one class from another.

We report accuracy in classification with our Hankelet-based action repre-

sentation for all the three models. We report the accuracy of our method with

(DHMM-SL) and without (DHMM) our atomic LTI systems learning procedure.

Furthermore, to gain more insights about our discriminative learning ap-475

proach, we present accuracy in classification for SHMM and DHMM when the

input of the methods is directly the skeleton (that is, the concatenation of the 3D

locations of the body joints on a frame-per-frame basis). In this case, we adopt

the Euclidean distance to compare skeletons and initialization of the states is

performed by K-means.480

The number of states for SHMM and DHMM has been set empirically to 8.

In Sec. 6.2 and 6.4, we performed the experiments with square block-Hankelets,

by empirically setting the order n of the Hankel matrix to 4. Therefore, the

sliding window is set to 7 frames. In Sec. 6.5, we test the SHMM with different

values of order and window length.485

6.2. Results on MSRA-3D – Protocol 1

We conducted a cross-subject evaluation on the MSRA-3D Action dataset

with different state initializations, and present average accuracy values in
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classification in Table 1.

The first part of the table shows accuracy in classification for methods at490

the state-of-the-art. The second part of the table shows the accuracy achieved

by SHMM and our DHMM using the 3D locations of the joints. The results

show that our discriminative learning approach improves the accuracy by ap-

proximately 13% with respect to the standard learning approach. The lower

part of the table shows the accuracies reached by HCRF, SHMM, DHMM and495

DHMM-SL using our Hankelet-based action representation. As the table shows,

the state learning approach slightly increases the overall accuracy of the DHMM

(approximately 0.5%). In comparison to SHMM, the accuracy of our DHMM

improves it by 3.5% and, when adopting our state learning approach, by 4.25%.

Overall, by employing our Hankelet-based representation, our method can500

attain state-of-the-art accuracies. In particular, our method attains an ac-

curacy similar to that obtained by [77] and [78] on equal terms of data

splitting. Our method does not need for any data pre-processing to

compute the Hankelet; in contrast, [77] needs to account for biometric

differences in the estimated skeletons by performing data normaliza-505

tion and skeleton registration, and applies Dynamic Time Warping

(DTW) to a reference sequence to account for varying lengths of

the sequences. While we learn a model for each action class, [78]

learns one-vs-one SVM (i.e. 190 SVMs on the MSRA-3D dataset)

and adopts a voting scheme to classify the actions.510

For completeness, we also report in Table 2 the results for methods at the

state-of-the-art that use hybrid descriptors extracted from skeleton data and

RGB video and/or depth maps. As these methods use also RGB/Depth data,

they are not directly comparable with the ones in Table 1, which use instead only

the 3D joint positions. We may note that still our method achieves competitive515

accuracy values.

Fig. 3 shows the confusion matrix for all the classes. This matrix was ob-

tained by averaging the classification results over 10 runs. Therefore, the classes

for which we report 100% accuracy were consistently and correctly classified in
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all the runs.520

The figure shows that most of the confusion is between some pairs of action

classes. In particular, there is confusion between high arm wave(HAW) and

horizontal arm wave (HoW), hand catch (HCa) and high throw (HT), forward

punch (FP) and high throw (HT), forward punch (FP) and tennis serve (TSe),

high throw (HT) and tennis serve (TSe), side kick (SK) and forward kick (FK).525

Comparing these pairs of classes, it is possible to note that these actions involve

the same joints and may have similar dynamics and, therefore, similar Hankelets.

We stress that our Hankelet-based representation can capture the dynamics of

the body joints, but not their relative positions, which can instead help in these

cases.530

Some confusion is present between hand catch (HCa) and draw x (DX), and

between high arm wave (HAW) and draw x (DX). This is probably due to the

variability among subjects with which DX has been performed.

As for the pair of actions bend (B) and pickup and throw (PT), we have

visually inspected the data and noted that: 1) the action B is a sub-action for535

PT; 2) due to skeleton tracking failures, in almost all the PT sequences, the

skeleton is not reliable or is totally missing. As a result, PT sequences are

severely corrupted and several of them reduce to a bend action.

6.3. Results on MSRA-3D – Protocol 2

We also conducted a cross-subject analysis on the three subsets AS1, AS2540

and AS3 whose results are reported in Table 3.

Looking at the accuracies of SHMM (Joints) and DHMM (Joints), which are

trained directly on the 3D locations of the joints, our discriminative learning

approach yields an improvement of the accuracy of about 5.2%, 4.64% and

19,78%, respectively on the sets AS1, AS2 and AS3. On average, the accuracy545

on the 3 sets increases by 9.89%.

When using the Hankelet-based representation, our discriminative learning

approach yields an increase in accuracy of about 2.3%, on average, for

25



Figure 3: Confusion matrix of the 20 classes of the MSRA-3D dataset in cross-subjects eval-

uation (results averaged on 10 runs). The actions in the dataset are: high arm wave (HAW),

horizontal arm wave (HoW), hammer (H), hand catch (HCa), forward punch (FP), high throw

(HT), draw x (DX), draw tick (DT), draw circle (DC), hand clap (HCl), two hand wave (2HW),

side-boxing (SB), bend (B), forward kick (FK), side kick (SK), jogging (J), tennis swing (TSw),

tennis serve (TSe), golf swing (GS), pickup and throw (PT).

the 3 sets. When the state learning approach is also adopted, the average

accuracy increases by 3.89%.550

Overall, our method attains accuracies similar to that in [42] and

[77]. We note that [42] adopts a KNN classifier with a dynamic

programming based distance, which means that classification is per-

formed by comparing against all the sequences in the training set.

Our classification is based on the Viterbi algorithm, which is applied555

once for each class. Therefore, our classification procedure has a lower

computational complexity with respect to [42].

Fig. 4 shows the confusion matrices for the three subsets, AS1, AS2, and

AS3. These matrices are consistent with the one obtained when testing on all

the classes. In AS1, most of the confusion is again between the classes forward560
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punch and tennis serve, forward punch and high throw, high throw and tennis

serve, bend and pickup and throw. This time, horizontal arm wave reaches 100%

accuracy (on all the 10 runs). Indeed, the AS1 subset does not contain the class

high arm wave, which was confusing the classifier in the experiment with all 20

classes.565

(a) MSRA-3D – AS1 (b) MSRA-3D – AS2 (c) MSRA-3D – AS3

Figure 4: Confusion matrices of the 3 subsets of 8 classes AS1, AS2 and AS3 of the MSRA-3D

dataset in cross-subjects evaluation (results averaged on 10 runs).

6.4. Results on UCF

We performed the experiments on the UCF dataset using 4-fold cross-validation.

We split the dataset into 4 sets and used 3/4 of the data to train the models

and the remaining 1/4 to test them. The average accuracy of the 4 splits on 10

runs is reported in Table 4.570

When comparing SHMM with DHMM on the 3D locations of the body

joints, we get an increase of the accuracy of about 5.8%, indicating that on

these features our discriminative learning approach outperforms the standard

learning approach for HMMs. On the Hankelets, our method attains state-of-

the-art performance. On these features, the discriminative learning improves575

the accuracy of the SHMM by about 0.8% and, jointly with the state learning

procedure, the increase of the accuracy is near 1.22%.

In contrast to [18], which performs data normalization to account

for cross-subjects biometric differences and noise, along with dimen-
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sionality reduction, our method does not require any pre-processing580

of the data.

Looking at the average confusion matrix in Fig. 5, we observe that most of

the confusion is between pairs of classes step back/step front, twist left/twist right

and step left/step right. These results are consistent with the ones obtained for

the MSRA-3D dataset and highlight once more the limitation of the Hankelets585

in discriminating between action classes that share similar dynamics but

involve movement in different directions.

Figure 5: Confusion matrix of the 16 classes of the UCF dataset in 4-fold cross-validation

(results averaged on 10 runs).

6.5. Analysis of the Hankelet-based Representation

We have conducted experiments to study the effect of varying the parameters

of the Hankelets on the recognition accuracy. Considering the time required for590

training a model and the fact that we have performed 1100 experiments, we

restricted the analysis to the SHMM but we believe similar considerations also

hold for our DHMM. All the results are reported in Fig. 6. In the horizontal

axes of each plot we report the order and, within brackets, the number of frames
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used to compute the Hankel matrix. We recall that, as explained in Sec. 3, the595

number of frames τ used to compute a Hankel matrix is τ = n+m− 1.

The first experiment measures the recognition accuracy while varying the

order n of the square block-Hankel matrix in the range [2, 10]. As shown in Fig.

6(a), the recognition accuracy on the MSRA-3D dataset and on its subsets AS1

and AS3 increases for n < 5 and then starts to decrease. For the subset AS3,600

the accuracy decreases for n > 6. As for the UCF dataset, the accuracy always

increases and tends to be consistently higher than 98% for n > 6, which means

using more than 11 frames. The decrease of performance for higher orders in

the MSRA-3D dataset may be a side-effect of the sliding window approach:

by using longer sliding window, the switching of LTI systems can affect more605

windows, and this can make modeling the action more difficult.

Therefore, we have run another experiment where we set the order n to 2 and

use longer temporal windows to compute the Hankel matrix. This means that

the Hankel matrices are now rectangular, with more columns m than block rows

n. The results of this experiment are shown in Fig. 6(b). With this setting,610

we may note a decrease in the performance for a number of frames higher

than 9. On the UCF dataset the average accuracy is higher than 98% when

more than 11 frames are used, which is consistent with the former experiment.

This experiment suggests that the duration of the sliding window is a crucial

parameter for the success of our approach and, considering the different impact615

of the duration on the subsets AS1, AS2 and AS3, it may be dependent on the

action class. Looking at the results, we also note that, when using 19 frames to

build a Hankel matrix of order 2, the performance on the subsets AS1 and AS2

decreases more than when using 19 frames to build a Hankel matrix of order

10. Therefore, the order is also an important parameter.620

To gain more insights on the role of the order with respect to the duration

of the sliding window, we have performed a further experiment, which we show

in Fig. 6(c). In this case, we set the duration of the sliding window to 9 and

vary the order in the range [2, 5]. The figure shows that increasing the order

does increase the overall accuracy, even if this increment is of about 1 – 2% on625
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the MSRA-3D dataset.

6.6. Discussion

Overall, the experiments on the MSRA-3D dataset demonstrate that the

discriminative learning and atomic LTI systems learning approaches result in

improved classification accuracy for the HMM. It is interesting to note630

the poor performance of HCRF. We have made other attempts to use HCRF

together with the Hankelets (for example, training the model on the whole set

of dissimilarity scores as input, instead of using a score for state), but in all

these experiments HCRF performed poorly. We believe that HCRF is more

difficult to train than our model, particularly in the presence of a high number635

of states and classes. Moreover, due to the large number of parameters, the

time required to train HCRF is much higher than the time needed for training

our DHMM. However, training an SHMM is faster than training a DHMM due

to the fact that an SHMM is trained on a subset of the training set and requires

fewer evaluations of the log-likelihood. Nonetheless, the classification procedure640

for the SHMM and DHMM is the same. As it is based on the Viterbi algorithm,

its computational complexity is polynomial.

We believe that in our approach the most relevant parameter is the duration

of the temporal window more than the order of the Hankel matrix. The exper-

iments also support the idea of representing an action as a sequence of outputs645

of atomic LTI systems, where each atomic LTI system represents very simple

dynamics (indeed an order equal to 2 is already effective).

As for the discrepancy between the UCF dataset and the MSRA-3D dataset,

we believe that the MSRA-3D dataset is noisier than the UCF dataset and this

can have negative effects on the adopted dissimilarity score. Moreover, the650

UCF dataset has a larger number of training sequences, which allows

for better estimates of the learned model parameters.

Finally, we want to highlight some difficulties we have encountered in evalu-

ation using the MSRA-3D dataset. In our experiments, we retain the corrupted

sequences in the training and test sets to guarantee a fair comparison with for-655
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mer works and we did not apply any interpolation of the data to reduce the noise.

However, we noticed that some authors filter out the corrupted sequences from

the dataset or ignore some classes. To make things worse, some works adopt

arbitrary data splitting. To have a clear understanding of all these challenges,

we refer the reader to [83], which presents an analysis of works that conduct660

evaluation using the MSRA-3D dataset. We stress that, in our experiments,

we have adopted a cross-subjects validation where subjects 1, 3, 5, 7 and 9 are

used for training the models while subjects 2, 4, 6, 8 and 10 are used to test the

models. Filtering of noisy sequences and other splitting of the data would have

probably resulted in higher accuracy.665

7. Conclusions and Future Work

In this paper we have proposed to represent an action in terms of a sequence

of outputs of atomic LTI systems. We represent each atomic LTI system by

means of a representative Hankel matrix. We have adopted a discriminative

HMM to model the transition from one LTI system to the next. We have670

also presented a novel method for learning the state representations (the atomic

LTI systems) where our discriminative learning formulation encourages

correct predictions of the models.

In experiments on two challenging action recognition benchmarks, our method

achieves state-of-the-art accuracy by considering only the 3D trajectories of675

body joints. Our experimental results show that our discriminative learning

approach seems to be more effective than the standard generative model learn-

ing approach for HMMs. However, our experiments have highlighted limitation

of our Hankelet-based action representation when dealing with sequences that

share the same dynamics but have different semantic labels due to differ-680

ences in motion directions (such as moving towards left or towards

right). Therefore, one possible future extension of our work could

consider encoding such information within the action representation.

In contrast to other works at the state-of-the-art, our technique does
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not require any pre-processing of the data to account for cross-subject685

biometric differences or varying duration of the action sequences.

A deep analysis of the impact on classification accuracy of varying settings for

building the Hankelets has shown that the classification accuracy depends

on the temporal duration of the sliding window used to compute the

Hankelet. On the other hand, the order of the dynamical model had690

less influence on classification accuracy, and simple dynamical models

suffice to get good classification performance for the datasets tested.

This work does not deal with segmentation of the trajectory into atomic systems,

which remains an interesting topic for future investigation. Under a generative

point of view, a semi-Markov model could be employed, which would increase695

the overall computational complexity of the model.

The proposed framework is general and is not limited to action recognition.

In future work we will study the possibility to apply this framework in other

application domains such as event recognition and crowd analysis.
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Input : {Yi}Wi=1: training set of Hankelet sequences;

labels: action-classes for each training sequence;

{Sc,i}N,Mc=1,i=1 state space;

{Λc}Nc=1, {T c}Nc=1, {πc}Nc=1 parameters of the HMMs;

Output: Cum loss: loss over all the samples in the dataset;

Grad: gradients

%% Accumulate loss for all the sequences in the training set;

Margin ← 1;

Cum loss ← 0;

for i← 1 to W do

%% Compute loss for the i-th sequence;

for c← 1 to N do

Dc ← dissimilarity score matrix between Yi and {Sc,i}Mi=1;

end

k ← labels(i);

[gk, zk]← applyViterbi(Dk,Λk, T k, πk);

[gc, zc]← min
c6=k

applyViterbi(Dc,Λc, T c, πc);

loss ← max(0, gk − gc+Margin);

Cum loss ← Cum loss + loss;

%% If the sequence is misclassified, accumulate gradients. The

%% optimization algorithm will use the gradients to update

%% the parameters;

if loss> 0 then
Accumulate gradients Grad for the parameters along the inferred

paths zk and zc for classes k and c respectively

end

end

Algorithm 4: f() : Objective Function to Minimize
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Methods (on 3D data) Accuracy

Most Informative Joints + SVM [75]* 33.33

RNN [76]** 42.5

Log. Reg. [74] 65.7

Lie-Group + DTW + SVM [77] 89.48

BoW + SVM (freq. pattern) [78] 90.22

Cov3DJ+SVM [79]*** 90.53

LTBSVM [18]**** 91.21

SHMM(Joints) 55.60

DHMM(Joints) 63

HCRF (Hankelets) 55.7

SHMM (Hankelets) 85.60

DHMM (Hankelets) 88.64

DHMM-SL (Hankelets) 89.23

Table 1: Average Accuracy (in %) on the MSRA-3D action dataset – Protocol 1. Our results

are averaged on 10 runs. * Results on 17 classes. ** Results reported in [74]. *** It excludes

13 more corrupted sequences. ****Different splitting of the subjects. Our method achieves

accuracy similar to that of [77] and [78], which use a comparable evaluation set-

ting. Our DHMM attains superior performance with respect to SHMM on equal

terms of feature representation.
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Methods (multi-stream) Accuracy

Action Graph [39] 74.7

DMM-HOG [80] 85.52

HON4D [16] 85.8

Rnd Occupancy Patterns (ROP) [19] 86.5

Actionlet Ensemble (LOP) [20] 87.21

HON4D + Ddisc [16] 88.89

JAS [81] 94.84

Random Forest [44] 94.3

Table 2: Accuracy on the MSRA-3D action dataset of methods that use other data than just

the skeletons.

Methods (on 3D data) AS1 AS2 AS3 Average

Joint-Histogram + HMM [14] 87.98 85.48 63.46 78.97

EigenJoints-NN [15] 74.50 76.10 96.40 82.33

Skeletal Quads + SVM [17] 88.39 86.61 94.59 89.86

KNN-Riemannian [42] 90.1 90.6 97.6 92.77

Multi-level HDP-HMM [82]** 81.2 78.1 90.6 83.3

Lie-Group + DTW + SVM [77] 95.29 83.87 98.22 92.46

Cov3DJ + SVM [79]* 88.04 89.29 94.29 90.53

SHMM(Joints) 68.57 65.89 67.39 67.28

DHMM(Joints) 72.14 68.95 80.72 73.94

HCRF (Hankelets) 58.5 60.79 65.36 61.55

SHMM (Hankelets) 86.76 88.75 92.79 89.43

DHMM (Hankelets) 88.62 94.18 91.70 91.5

DHMM-SL (Hankelets) 90.29 95.15 93.29 92.91

Table 3: Accuracy on the MSRA-3D action dataset – Protocol 2. *It excludes 13 noisy

sequences. **Different splitting of the data. On average on the 3 subsets, our method

achieves accuracy similar to that of [42] and [77]. On equal terms of feature

representation and on average, our DHMM attains superior performance than

the SHMM.
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Methods Accuracy

Log.Reg [74] 95.94

CRF [74] 94.29

BoW + SVM (distance) [74] 94.06

LTBSVM [18]* 97.91

SHMM(Joints) 56.80

DHMM(Joints) 60.12

HCRF (Hankelets) 53.31

SHMM (Hankelets) 96,48

DHMM (Hankelets) 97.27

DHMM-SL (Hankelets) 97.66

Table 4: Accuracy on all the 16 classes of the UCF dataset. * 70% of data used for

training, 30% used in test. On equal terms of data splitting, our method achieves

superior accuracy than [74]. Accuracy of [18] is not fully comparable due to a

different splitting proportion of the dataset.
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(b) Order=2, Varying N. Frames
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(c) Varying Order, N. Frames=9

Figure 6: Average accuracy of the SHMM classifier with varying parameters for building

the Hankelets on different datasets (average results on 10 runs). On the x-axis, the first

number indicates the number of block-rows of the Hankel matrix (order). The

number in parentheses indicates the number of frames τ used to build the Han-

kelet. In Figure 6(a), increasing the order of the squared block-Hankel matrix

up to 5, the accuracy increases for all the datasets. On the MSRA-3D dataset,

an order higher than 5 makes the accuracy to decrease. In Figure 6(b), keeping

the order set to 2 and increasing the duration of the sliding window, accuracy

on the MSRA-3D dataset decreases for τ higher than 9 frames. In Figure 6(c),

by keeping the duration of the sliding window set to 9, increasing the order does

increase the accuracy.
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