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Abstract

This paper presents a novel approach to solve the prob-
lem of person re-identification in non-overlapping camera
views. We hypothesize that the feature vector of a probe im-
age approximately lies in the linear span of the correspond-
ing gallery feature vectors in a learned embedding space.
We then formulate the re-identification problem as a block
sparse recovery problem and solve the associated optimiza-
tion problem using the alternating directions framework.
We evaluate our approach on the publicly available PRID
2011 and iLIDS-VID multi-shot re-identification datasets
and demonstrate superior performance in comparison with
the current state of the art.

1. Introduction

Automated person re-identification, or re-id, systems
play a key role in several security and surveillance applica-
tions. Re-identifying the same person across a camera net-
work with non-overlapping views is particularly challeng-
ing, since inter-camera illumination and appearance varia-
tions are often very pronounced. Many researchers have
addressed this problem by matching appearance features in
the single-shot setting [29, 18, 11], i.e., assuming only one
image per person per camera view exists. However, in many
real-world surveillance applications, such as an airport cam-
era network [13], we have a set of images for each person,
e.g., acquired while tracking them. In this case, re-id is actu-
ally a multi-shot problem. Unfortunately, most current re-id
algorithms are designed for the single-shot setting, and are
not capable of exploiting the availability of multiple images
for each person.
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In this paper, we present a principled approach specifi-
cally designed to solve the multi-shot re-id problem. Our
algorithm design stems from the following intuitions:

• In some learned embedding space, the feature vector of
the probe image of a person approximately lies in the
linear span of the corresponding images of that person
in the gallery.

• If we construct a dictionary D whose columns are the
feature vectors in the embedding space of all the im-
ages corresponding to all the persons in the gallery,
the feature vector of the probe image can be expressed
as a sparse linear combination of the columns of D.
Most importantly, the recovered sparse coefficient vec-
tor will have a block structure because the dictionary
D has a block structure. This is true because we have
several images for each person in the gallery, and the
sets of images for each person naturally form disparate
blocks.

Building upon these ideas, we present a novel formulation
of the multi-shot re-id problem. We pose the problem of
determining the class of a feature vector p of a probe image
as a block sparse recovery problem. We then solve the as-
sociated block sparse minimization problem using the alter-
nating directions framework. We evaluate our algorithm on
two publicly available benchmarking datasets and demon-
strate superior results when compared to the current state of
the art in multi-shot re-id. The proposed method is partic-
ularly well-suited to scenarios involving background clutter
and occlusions.

2. Related Work
The traditional paradigm for solving the person re-id

problem is to extract appearance features of the target and
each candidate and then compare the feature vectors using a
distance metric. This has given rise to two different research
paths: appearance modeling and metric learning. Most re-id
algorithms describe the appearance using texture and color



histograms [6, 26]. To learn distance metrics, most methods
focus on learning Mahalanobis-like distances [18, 11, 1].
However, these methods are designed for the single-shot
setting, i.e., they rely on comparing the feature vector of
one probe image with the feature vector of one gallery im-
age. The naive way to extend such methods to the multi-
shot setting is to compare every possible pair of probe and
gallery images and aggregate the results.

Several methods specifically tackle the multi-shot re-id
problem. For example, Cong et al. [3] used image se-
quences to build aggregated appearance descriptors. Wang
et al. [24] proposed an algorithm that selects discriminative
fragments to learn a video ranking function. Li et al. [14]
learned discriminative random forests and aggregated clas-
sification scores for all the available images for each per-
son to make a decision. Image sequences have also been
used to perform direct sequence matching. Simonnet et al.
[21] used dynamic time warping to perform temporal se-
quence matching. The multi-shot re-id problem has also
been formulated as a gait recognition problem [19], where
person discrimination is based on the walking style. How-
ever, these methods are likely to fail in the presence of back-
ground clutter and occlusions.

Sparse representations have become a popular frame-
work for various computer vision tasks, most notably in
face recognition [25, 23], object tracking [17, 27] and im-
age restoration [16]. However, sparse representation based
classification methods have received relatively little atten-
tion for the person re-id problem. While some methods take
this approach, e.g., [8, 12, 15], they do not exploit the inher-
ent block structure of the feature vector dictionary.

3. Algorithm Description

3.1. Feature Extraction

We describe each image using texture and color his-
tograms, which are popular descriptors for person re-
identification [20, 30]. Following the approach of Gray and
Tao [7], we divide the image into six horizontal strips. In
each strip, we first compute filter responses of 13 Schmid
filters and 6 Gabor filters. The filter responses are then
used to compute a histogram with 16 bins. To describe the
color information in each strip, we compute the 16-bin his-
tograms in the whitened RGB space, the HSV space and
the YCbCr space. This results in a 432-dimensional feature
vector for each strip. The feature vectors for all the 6 strips
are concatenated to form a 2592-dimensional feature vector.

Given the feature vectors {gij} for the gallery images
and {pij} for the probe images, where j denotes the jth

image of the ith unique person, computed as described
above, we then learn a transformed embedding space us-
ing local Fisher discriminant analysis (LFDA) [22]. For
the sake of notational convenience, let us define the matrix

F ∈ Rf×N of all the feature vectors {gij} and {pij} as
F =

[
{gij} {pij}

]
. Here, f = 2592, and N is the total

number of images available. The traditional Fisher discrim-
inant analysis (FDA), which minimizes the within-class and
maximizes the between-class scatter, fails to give satisfac-
tory results if the input data is multi-modal. Indeed, in the
multi-shot re-id problem, the data is multimodal since each
person in the gallery view and the probe view has multi-
ple images. To this end, we employ LFDA, wherein local-
ity preserving projections [9] are used to ensure the feature
vectors of each person are close in the embedding space,
thereby preserving the local structure of the data. Specifi-
cally, we first define an affinity matrix A that captures the
closeness of the feature vectors F∗a and F∗b, where F∗a is
the ath column of F. The value Aab = 1 if F∗a and F∗b
are close to each other; otherwise it is set to 0. Here, we use
the k-nearest neighbors rule with k = 7 to determine this
closeness.

We then define the local within-class and between-class
scatter matrices Sw and Sb as

Sw =
1

2

N∑
a,b=1

Aw
ab(F∗a − F∗b)(F∗a − F∗b)

> (1)

Sb =
1

2

N∑
a,b=1

Ab
ab(F∗a − F∗b)(F∗a − F∗b)

> (2)

where Aw
ab and Ab

ab are defined as

Aw
ab =

{
Aab

nc
if class(F∗a) = class(F∗b) = c

0 if class(F∗a) 6= class(F∗b)
(3)

Ab
ab =

{
Aab(

1
N −

1
nc
) if class(F∗a) = class(F∗b) = c

1
N if class(F∗a) 6= class(F∗b)

(4)
where nc is the number of images available for the per-
son with index c. The transformation T ∈ Rf×d to the
d-dimensional embedding space is then learned as

T = argmax
T

trace{(T>SwT)−1T>SbT} (5)

Our training process is illustrated in Figure 1.

3.2. Block Sparsity for Re-Identification

3.2.1 Problem Formulation

Let K denote the number of unique people in the gallery,
and ni be the number of available images for the person
with index i, denoted as Pi in the following. Let ĝij ∈
Rd, j = 1, . . . , ni be the d-dimensional feature vector in



Figure 1: In the training stage, we project the gallery and probe images to a common embedding space.

Figure 2: Given the probe feature vector, we project it to the learned embedding space and solve a block sparse recovery
problem to determine its class.

the learned embedding space of the jth image of Pi in the
gallery.

We define the person-specific dictionary Gi ∈ Rd×ni as

Gi =
[
ĝi1 ĝi2 · · · ĝini

]
(6)

We then construct the gallery dictionary D ∈ Rd×N as:

D =
[
G1 G2 · · · GK

]
(7)

where N =
∑K
i=1 ni is the total number of images of all

people present in the gallery.
Now consider p̂ ∈ Rd, the feature vector in the learned

embedding space of a particular image of Pi in the probe
camera view. We hypothesize that p̂ approximately lies in
the subspace spanned by the feature vectors ĝij , i.e.,

p̂ ≈ xi1ĝi1 + xi2ĝi2 + · · ·+ xini ĝini (8)

where xij ∈ R, j = 1, 2, . . . , ni.

Put a different way, we model

p̂ ≈ G1x[1] +G2x[2] + · · ·+GKx[K] (9)

where x[i] =
[
xi1 xi2 · · · xini

]
∈ Rni represents the

block of coefficients corresponding to the person with index
i, and our hypothesis is that in the most desirable solution,
the contribution from the coefficient block x[i] dominates
the contributions from the coefficient block x[j], j 6= i.

We note that this hypothesis is stronger than the model

p̂ ≈ Dx (10)

where x ∈ RN and the hypothesis is that x is sparse.
That is, instead of expecting the solution vector to have as
few non-zero coefficients as possible, our approach requires
these coefficients to be concentrated in one of the person-
specific blocks of the feature dictionary.

Following [5], we pose our problem as the following



l1/l2 optimization :

min
x

∑K
i=1 ‖x[i]‖2

s.t. p̂ = Dx
(11)

Intuitively, this problem formulation attempts to mini-
mize the l2 norm, or the energy, of the blocks in the coeffi-
cient vector x =

[
x[1] x[2] · · · x[K]

]
. Subsequently,

given the recovered block sparse coefficient vector, xs, we
determine the identity of the person represented by the fea-
ture vector p̂ by simply determining the block that results in
the least residual error. Specifically, we compute the resid-
ual ri = ‖p̂ − Gixs[i]‖, i = 1, 2, . . . ,K, and assign the
index of the least residual as the identity of the person. Fig-
ure 2 illustrates the overall approach.

3.2.2 Occlusions and Data Corruptions

The images of people captured from surveillance cameras
are often occluded by other people and/or objects, as can
be seen from the sample images shown in Figure 3. Unlike
other related multi-shot re-id techniques, our formulation
allows us to explicitly model occlusions. Specifically, we
introduce an error term e ∈ Rd into the problem formula-
tion of Equation 10. Our linear approximation model now
becomes:

p̂ = Dx+ e (12)

Figure 3: Occluded people in the iLIDS-VID dataset.

The minimization problem of Equation 11 can then be
expressed as:

min
x,e

K∑
i=1

‖x[i]‖2 + ‖e‖1

s.t. p̂ = Dx+ e

(13)

Given the recovered block sparse coefficient vector xs
and the error vector es, we compute the residual
r = ‖p̂−Gixs[i]− e‖, i = 1, 2, . . . ,K and determine the
identity of the person as before.

3.2.3 Block Sparse Recovery using Alternating Direc-
tions

Given p̂ and D, we use the alternating directions framework
to obtain the solution to the problem of Equation 13. First,
by introducing a slack variable s ∈ RN , we re-formulate
the problem of Equation 13 as:

min
s,x,e

K∑
i=1

‖s[i]‖2 + ‖e‖1

s.t. s = x

p̂ = Dx+ e

(14)

We now introduce Lagrange multipliers m1 ∈ RN and
m2 ∈ Rd to convert the constrained minimization problem
of Equation 14 into the following unconstrained minimiza-
tion problem:

min
s,x,e

K∑
i=1

‖s[i]‖2 + ‖e‖1

−m>1 (s− x)−m>2 (Dx+ e− p̂)

+
η1
2
‖s− x‖2 + η2

2
‖Dx+ e− p̂‖2

(15)

We add the quadratic penalty terms η1
2 ‖s − x‖2 and

η2
2 ‖Dx+ e− p̂‖2 to the cost function due to their smooth-

ness property. We seek to minimize the cost function in
Equation 15 over the three variables s, x, and e. To this
end, we employ the alternating directions framework by it-
eratively minimizing the cost function with respect to one
variable at a time, while keeping the other two variables
fixed.

First, we fix s and e, and minimize the cost function with
respect to x. In this case, the cost function reduces to:

min
x
−m>1 (s− x)−m>2 (Dx+ e− p̂)

+
η1
2
‖s− x‖2 + η2

2
‖Dx+ e− p̂‖2

(16)

It is easy to see that this x sub-problem has a closed-form
solution, given by:

x∗ = (η1I+η2D
>D)−1(η2D

>(p̂−e)+η1s+m>2 D−m1)
(17)

Next, we fix s and x, and minimize the cost function with
respect to e. In this case, the cost function reduces to:

min
e
‖e‖1−m>2 (Dx∗+e− p̂)+

η2
2
‖Dx∗+e− p̂‖2

(18)

where x∗ is the solution to the x sub-problem above. This
e sub-problem also has a closed-form solution, given by:

e∗ = shrink
(
m2

η2
−Dx∗ − p̂,

1

η2

)
(19)



where shrink(t, α) = sgn(t) � max{|t| − α, 0}, where �
indicates element-wise multiplication.

Finally, we fix x and e, and minimize the cost function
with respect to s. In this case, the cost function reduces to:

min
s

K∑
i=1

‖s[i]‖2 − m>1 (s − x∗) +
η1
2
‖s − x∗‖2 (20)

We note that this s sub-problem also has a closed-form solu-
tion, where the coefficients for each block i = 1, 2, . . . ,K
are given by the so-called block shrink [4] operation:

s∗[i] = max
(
‖x∗[i] + m1[i]

η1
‖ − 1

η1
, 0

)
x∗[i] + m1[i]

η1

‖x∗[i] + m1[i]
η1
‖2

(21)
Finally, we update the Lagrange multipliers as m1 = m1−
η1(s

∗ − x∗) and m2 = m2 − η1(Dx∗ + e∗ − p̂). This
iterative procedure is summarized in Algorithm 1.

Algorithm 1: An alternating directions algorithm to
solve the minimization problem of Equation 13

Input : p̂, D ∈ Rm×n
Output: x∗, e∗
Initialize s = 0, e = 0, m1 = 0, m2 = 0;
η1 = 2m

‖p̂‖1 , η2 = η1;
for t← 1, 2, . . . do

xt = (η1I + η2D
>D)−1(η2D

>(p̂− et−1) +
η1st−1 +m>2 D−m1);
et = shrink(m2

η2
−Dxt − p̂, 1

η2
);

st[i] =

max
(
‖xt[i] + m1[i]

η1
‖ − 1

η1
, 0

)
xt[i]+

m1[i]
η1

‖xt[i]+m1[i]
η1
‖2

,

i = 1, 2, . . . ,K;
m1 = m1 − η1(st − xt);
m2 = m2 − η1(Dxt + et − p̂)

end
x∗ = xt;
e∗ = et;

3.2.4 Re-identification

Let p̂ij ∈ Rd, be the feature vector in the embedding
space of the jth image of Pi in the probe camera view.
To re-identify this person, we solve the problem of Equa-
tion 13 for each p̂ij , j = 1, 2, . . . ,m, where m is the
number of images available in the probe camera view for
Pi. In each case, we compute the residual vector rj(i) =
‖p̂ij − Gixs[i] − es‖, i = 1, 2, . . . ,K. We then sum all
the residual vectors rj ∈ RK for each image of the per-
son to form the net residual vector R =

∑K
j=1 rj . We then

determine the identity of the person as the index of the min-
imum value in this net residual vector R. This process is
summarized in Algorithm 2.

Algorithm 2: The proposed multi-shot re-id frame-
work

Input : Feature vectors p̂ij ∈ Rd, j = 1, 2, . . . ,m, of
the person Pi in the probe camera view,
Gallery person dictionaries Gi,
i = 1, 2, . . . ,K

Output: Class c of person Pi
R = 0;
for j ← 1, 2, . . . ,m do

Solve problem of Equation 13 for p̂ij to get x∗

and e∗;
Compute residuals vector
rj(i) = ‖p̂ij −Gix

∗[i]− e∗‖, i = 1, 2, . . . ,K;
R = R+ rj ;

end
c = index of the minimum value in R;

4. Experiments and Results
We experimentally validate the efficacy of the proposed

multi-shot person re-identification formulation on the fol-
lowing publicly available multi-shot datasets: iLIDS-VID
[24] and PRID 2011 [10].

iLIDS-VID [24]: This dataset was created from two non-
overlapping camera views at an airport. In each camera
view, the dataset consists of image sequences of vari-
able length for 300 people. The images in this dataset
suffer from extreme lighting and viewpoint variations,
occlusions and cluttered background.

PRID 2011 [10]: This dataset was created from two adja-
cent camera views capturing outdoor scenes. In each
camera view, the dataset consists of image sequences
of variable length for 200 people. The images in
this dataset involve viewpoint, illumination, and back-
ground variations.

4.1. Evaluation protocol

For each dataset, we randomly split the data into equal-
sized training and testing sets. For each split, we randomly
select 10 images for each person in both the gallery view
and the probe view. The training set is used to learn the pro-
jection matrix in Equation 5. Using this projection matrix,
the test set is then projected onto the d-dimensional embed-
ding space. All the images from one camera view form the
gallery dictionary D, and the images from the other view
are used as probe images. We repeat this process 10 times



Figure 4: An illustrative example demonstrating the efficacy of our re-id framework.

Table 1: Evaluating the impact of the embedding space.

Dataset PRID 2011 iLIDS-VID
Rank Rank 1 Rank 5 Rank 10 Rank 20 Rank 1 Rank 5 Rank 10 Rank 20

SRID in original feature space 9.0 27.7 40.4 56.4 12.6 28.4 37.9 50.2
SRID in embedding space 35.1 59.4 69.8 79.7 24.9 44.5 55.6 66.2

to compute the average performance for this particular train-
test split. We repeat this experimental procedure for 10
such train-test splits and report the overall average perfor-
mance. We compare our results with several recently pro-
posed approaches that report state-of-the-art performance:
SDALF [6], Salience [28], RPRF [14], DVR [24] and a
multi-shot extension, as described in [24], of a combination
of RankSVM [2] and Color and LBP features [11]. In all
these competing approaches, we use the same experimental
settings as described in [24]. We abbreviate our proposed
approach as SRID.

We choose the dimension of the embedding space using
cross-validation. Figure 5 plots the Rank 1 performance
on the validation set for both PRID 2011 and iLIDS-VID
datasets as a function of d. Since d = 750 results in the best
rank 1 performance on both datasets, we fixed d = 750 for
the remaining experiments.

4.2. Results and Discussion

We begin the discussion of our results with an illustra-
tive example. Consider the probe image shown in Figure
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Figure 5: Rank 1 performance on the validation set.

4. This test case is taken from the PRID 2011 [10] dataset.
For the purposes of this particular example, we considered
5 images for each person in both the gallery view and the
probe view. Following the testing procedure described in
the previous sections, we first compute the feature vector
for this image and project it to the learned embedding space.



Table 2: Comparison with the state of the art: Results on the PRID 2011 and iLIDS-VID datasets.

Dataset PRID 2011 iLIDS-VID
Rank Rank 1 Rank 5 Rank 10 Rank 20 Rank 1 Rank 5 Rank 10 Rank 20

SDALF [6] 5.2 20.7 32 47.9 6.3 18.8 27.1 37.3
Salience [28] 25.8 43.6 52.6 62 10.2 24.8 35.5 52.9
RPRF [14] 19.3 38.4 51.6 68.1 14.5 29.8 40.7 58.1
DVR [24] 28.9 55.3 65.5 82.8 23.3 42.4 55.3 68.4
Color & LBP [11] + RankSVM [2] 34.3 56 65.5 77.3 23.2 44.2 54.1 68.8
SRID 35.1 59.4 69.8 79.7 24.9 44.5 55.6 66.2
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Figure 6: CMC curves for the PRID 2011 and iLIDS-VID datasets

Now, given this projected vector p̂ and the matrix D, we
compute the block sparse coefficient vector x∗ using the al-
ternating directions framework described in Section 3.2.3.
The elements of this recovered vector are also shown in the
graph in Figure 4. As can be seen from the graph, there
exists one block of elements that contains significant coeffi-
cients, while most of the other terms are relatively insignif-
icant, in line with our hypothesis described in Section 3.2.
In fact, this is the block that corresponds to the correct set
of gallery images, thereby forming evidence for correct re-
identification in this case.

4.3. Evaluating the embedding space

We first evaluate the impact of projecting the feature vec-
tors to the learned embedding space. To this end, we per-
form experiments following the protocol discussed in Sec-
tion 4.1 on the iLIDS-VID and PRID 2011 datasets twice:
first, applying SRID in the embedding space, and second,
applying SRID in the original feature space. The corre-
sponding cumulative match characteristic (CMC) curves for
both the test datasets are shown in Figures 6a and 6b and
the results are summarized in Table 1. From the table, we
see that with SRID in the embedding space, Rank 1 per-
formance has been boosted by about 26% and 12% on the
PRID 2011 and iLIDS-VID datasets respectively. We can
also note from the plot that SRID in the embedding space

gives consistently better results at all ranks when compared
with SRID in the original feature space. This experiment
clearly validates our original hypothesis of formulating a
linear approximation model in some learned embedding
space rather than the original feature space.

4.4. Comparison with the state of the art

We next compare the rank-ordered re-identification re-
sults of our approach with that of the current state of the art
in multi-shot re-id. The CMC curves for both the evalua-
tion datasets are shown in Figures 6c and 6d, and the results
are summarized in Table 2. As can be seen from the results,
our proposed approach offers superior performance at ranks
1, 5 and 10 when compared with the other competing ap-
proaches on both PRID 2011 and iLIDS-VID. Specifically,
the rank 1 performance of SRID is 35.1% and 24.9% on the
PRID 2011 and iLIDS-VID datasets respectively, whereas
the corresponding best numbers among all the competing
methods are 34.3% and 23.3% respectively.

5. Conclusions and Future Work
In this work, we presented a novel formulation for the

multi-shot person re-identification problem. We conjec-
tured that the feature vector of a probe image in a learned
embedding space approximately lies in the linear span of



the corresponding gallery feature vectors. We constructed
a dictionary D of the gallery feature vectors, and exploited
its inherent block structure by posing re-id as a block sparse
minimization problem, which we solved using the alter-
nating directions framework. We evaluated our approach
on two publicly available benchmarking multi-shot re-id
datasets and demonstrated superior results when compared
to the current state of the art.

As discussed in Section 4.1, for the purposes of evaluat-
ing our approach, we randomly selected 10 images to form
the probe and the gallery. We did this primarily to deal with
the high computational complexity associated with the iter-
ative solution to the problem of Equation 13 discussed in
Section 3.2.3. In future work, we plan on exploring two
lines of work. First, we will investigate faster procedures to
solve the problem of Equation 13. Next, we will focus on
developing algorithms that make a more informed choice as
to which of the available images are most discriminative for
re-identification.
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