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Abstract—Human re-identification across cameras with non-overlapping fields of view is one of the most important and difficult
problems in video surveillance and analysis. However, current algorithms are likely to fail in real-world scenarios for several
reasons. For example, surveillance cameras are typically mounted high above the ground plane, causing serious perspective
changes. Also, most algorithms approach matching across images using the same descriptors, regardless of camera viewpoint
or human pose. Here, we introduce a re-identification algorithm that addresses both problems. We build a model for human
appearance as a function of pose, using training data gathered from a calibrated camera. We then apply this “pose prior” in
online re-identification to make matching and identification more robust to viewpoint. We further integrate person-specific features
learned over the course of tracking to improve the algorithm’s performance. We evaluate the performance of the proposed
algorithm and compare it to several state-of-the-art algorithms, demonstrating superior performance on standard benchmarking
datasets as well as a challenging new airport surveillance scenario.

Index Terms—Human Re-Identification, Viewpoint Invariance, Camera Networks

1 INTRODUCTION

ECOGNIZING the same human as he or she
moves through a network of cameras with non-
overlapping fields of view is an important and chal-
lenging problem in security and surveillance appli-
cations. This is often called the re-identification or
“re-id” problem. For example, in an airport security
surveillance system, once a target has been identified
in one camera by a user or program, we want to learn
the appearance of the target and recognize him/her
when he/she is observed by the other cameras. We
call this type of re-id problem “tag-and-track”.
Unfortunately, current re-id algorithms are likely to
fail in real-world tag-and-track scenarios for several
reasons. The standard datasets used to evaluate re-id
algorithms (see Figure 1) are all images taken from
cameras whose optical axes have a small angle with
(or are even parallel to) the ground plane, which
is generally not the case in real-world surveillance
applications. In the latter environments, the angle
between the camera optical axis and the floor is usu-
ally large (~45°), causing serious perspective changes.
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Fig. 1. (a) Sample images from the VIPeR dataset [20]. (b) Sample
images from the iLids dataset [38].

More importantly, most re-id algorithms approach
matching across images using the same descriptors,
regardless of camera viewpoint or human pose, which
can induce serious error in the matching of target
candidates.

In this paper, we propose a novel viewpoint-
invariant approach to re-identify target humans in
cameras that don’t share overlapping fields of view.
The approach is designed to be directly applicable
to typical real-world surveillance camera networks.
It improves the traditional person re-identification
process with three contributions, as shown in Fig-
ure 2. First, we introduce a sub-image rectification
method to cope with perspective distortion, which
is common in surveillance cameras and may cause
serious errors in matching. Second, we show that
pairs of person descriptors from a traditional feature
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extraction method vary significantly with viewpoint.
Hence, we propose a viewpoint-invariant descriptor
that takes into account the viewpoint of the human
using what we call a pose prior learned from training
data. Finally, complementing the traditional offline
specification of target features, we show how person-
specific discriminative features can be learned online
for re-identification. The proposed algorithms can eas-
ily be introduced into current metric learning based
re-id algorithms. We test our algorithms on both stan-
dard benchmarking datasets and a challenging new
dataset acquired at a US airport, demonstrating that
the proposed algorithm significantly improves the
performance of current state-of-the-art metric learning

based re-id algorithms.
Offline Trained
Metric
=

Online Person
Specific Weights

Fig. 2. Improvements to the re-id process with the contributions
proposed in this paper. Blocks in blue are steps in a traditional re-
id process while blocks in red are the new steps proposed in this
paper.
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This paper is organized as follows. Section 2 in-
troduces related work in the field of human re-
identification. Section 3 describes a sub-image rec-
tification method used to eliminate the perspective
distortion in images from typical surveillance cam-
eras. Section 4 introduces the proposed pose prior
and its application to feature extraction and offline
classifier training. It also describes the online learning
of subject-discriminative features and its integration
with the offline classifier in descriptor matching. Sec-
tion 5 describes how the proposed algorithms can be
applied in combination with current metric learning
methods in practical real-world scenario. Section 6
presents the experimental results on multiple stan-
dard datasets, as well as a new dataset collected from
a surveillance camera network at an airport.

2 RELATED WORK

Traditional biometric methods such as face [21], gait
[46] or silhouette [44] recognition have been widely
used in human identity recognition; however, they
are difficult to apply to the re-id problem since most
surveillance cameras’ resolution is too poor to get a
clear image of the target. This is quite different from
the case of person identification with high-definition
videos [16], [27], [42].

Instead, most recently proposed re-identification
algorithms take a feature-based approach. These ap-
proaches mainly focus on feature representation and

metric learning. There are several types of feature
models used in re-id problems. Haar and DCD based
features [3] are discriminative but are not robust to
illumination and viewpoint changes. Color and tex-
ture histograms [20], [40], [50] are computationally
efficient and considered to be more robust. Histogram
Plus Epitome (HPE) [8], Quantized local feature
histograms [43] and Mean Riemannian Covariance
patches [5] take into account recurrent local patterns
or accumulated local features to achieve more stable
performance. However, they depend on multiple im-
ages. Exploiting symmetry and asymmetry features
[17] can effectively discriminate candidates without
an offline trained metric. However, the computational
cost is high and is not suitable for real-time appli-
cations. Probabilistic color histograms [13] enhanced
the robustness of color signatures and depend on the
selection of the training set. Spatiotemporal appear-
ance [19] part-based feature descriptors [4], [10], [11],
[36] enable more invariant features. However, they
require complex and precise pre-processing. More
importantly, they are still not invariant to viewpoint
changes. As we show below, always extracting fea-
ture descriptors in the same way when looking at
people from different angles introduces errors that
may significantly affect the descriptiveness of person
signatures.

Many of these feature descriptors are high-
dimensional and contain some unreliable features;
hence metric model learning and feature selection are
also critical modules for re-id. Many general metric
machine learning approaches have been adopted in
re-identification applications including Large Margin
Nearest Neighbor (LMNN) [47], and Information The-
oretic Metric Learning (ITML) [14]. Based on standard
machine learning algorithms, much work has been
done to improve the performance of these algorithms
specifically for re-identification or recognition prob-
lems, such as the variants of LMNN [15], [23], Support
Vector Ranking (RankSVM) [40], Logistic Discrimi-
nant Metric Learning (LDML) [21], Mahalanobis dis-
tance metric [24], local Fisher Discriminant Analysis
[39], and boosting approaches [20], [22]. Also, some
metric learning algorithms specifically targeting re-
identification problem have been proposed, including
Relative Distance Comparison (RDC) [49], dissimi-
larity profile analysis [30], and Pairwise Constrained
Component Analysis (PCCA) [37]. These types of
approaches can usually achieve better performance
than traditional machine learning algorithms. There
are also approaches to exploit discriminative or in-
variant features. Usually they are learned online, such
as online feature selection [16], unsupervised salience
learning [48], set-based methods [50] and covariance
metric [2]. They can also be learned based on an
offline learned dictionary, or using prototypes such
as attribute-sensitive feature importance learning [31].
However, while these algorithms can to some ex-
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tent extract discriminative and descriptive features,
none of these metric learning algorithms are able
to specifically extract viewpoint-invariant information
from the feature descriptors. Among these metric
learning algorithms, RDC [49] and RankSVM [40]
are the most popular, and are extensively evaluated
on most standard datasets. We selected these two
methods to evaluate the performance improvement of
our proposed algorithms, as well as the recent PCCA
algorithm [37].

Based on the above feature model and metric
learning approaches, additional techniques have also
been introduced to improve the performance of re-
id, including taking into account the spatial-temporal
information of camera networks [19], [25], [29], [36],
descriptive and discriminative classification [22], and
panoramic appearance models [18].

The critical issue for our problem of interest is that
these previous algorithms are not generally viewpoint
invariant. Some re-id algorithms based on viewpoint
invariant features [1], [27] such as SIFT [32] and SURF
[7] may only work well with HD videos. Conte et
al. [12] proposed the Multiview Appearance Model,
which continuously updates an appearance model of
the target for each quantized orientation. Signatures
of candidates are only matched with the signatures
of targets with the closest orientation. However, this
algorithm is based on the assumption that many
views of the target have been captured before starting
re-id.

3 SuB-IMAGE RECTIFICATION

A key issue for human re-identification in real-world
camera networks is that in each viewpoint, the image
of the target will be perspectively distorted, which
may seriously affect algorithm performance. Hence,
we first address the problem of eliminating perspec-
tive distortions in the region of the image containing
the target, which we call rectification [28]. We assume
the camera to be calibrated, which is straightforward
in surveillance scenarios given the presence of parallel
lines and tracked objects [33]. Our algorithm can also
obtain necessary calibration information with rough
hand-labeling or by observing target motion on the
ground plane.

3.1

We assume the XY plane of the world coordinate
system coincides with the ground plane, so that for
any 3D point on the floor, we have

Rectification

M=K[r ry t]Z=HZ

in which z is the homogeneous coordinate of a point
(u,v) on the image plane, Z = [z y 1]T, Aisa
scalar, K is the camera intrinsic parameter matrix, ry
and r, are the first and second columns of rotation

matrix R, t is the translation vector and H is the
homography matrix between the image plane and the
XY plane (i.e., the floor). Once a person is detected,
the image position of his/her foot on the floor can
be obtained as z¢ roughly from the bounding box ,
and we can recover the 3D position where the person
is standing on the floor as Z¢ ~ H 'z, in which
Ze =[xy y; 1]'. With the image coordinates of
the top of the person’s head, z,, we can recover the 3D
coordinates Zp, = [ zy y; h ]T of the top-of-head
with

hmgzzh—[rru my m4}—rzh 1

in which m; is the i** column of M = K[R|t]. From
this information we can infer a 3D cylinder orthogonal
to the ground plane with height h and radius w, which
can be either a fixed value or estimated by the width
of the tracking bounding box.

We now assume a person has been detected in
an image within the polygon nynpncng, with foot
position z¢ and head position z,. We want to obtain
a new image corresponding to a head-on view of a
corresponding rectangle in 3D given by N,N,N:Ng
orthogonal to the ground plane.

Let C be the 3D location of the camera and Z. be
the projection of C on the XY plane. Now we want
to get a rectified sub-image of the detected target. Let
the projection of CZ¢ onto the ground plane be Z.Z¢.
The rectified sub-image NN, N.Ny is parallel to the
Z axis and orthogonal to Z.Z¢. The desired 3D points
in Figure 3 can then be determined as

No = (zp +wcos¢,ys + wsing,0)
Ny = ( 0)
N. = (zy+wcos¢,ys +wsing, h)
Ng = (v —wcosp,ys —wsing, h)

Te— f)
Ye — Y5 .

The homography between the two planes defined
by Manpncng and the projection of NaNp,N:Ng on
the image plane can then be computed and used

to create a new rectified image in which the person
appears to be vertical, as illustrated in Figure 3.

Ty —wcos P,y — wsin g,

in which

¢ = arctan (

3.2 Viewpoint Estimation

As the person moves between two points on the
floor, we obtain two 3D positions Z¢, and Zg,. The
viewpoint angle of the person with respect to the
camera can be estimated by:

Ze, —Z¢,) (Ze —Z
6 = arccos <( f2 fl) (Ze - f1)> 2)
|Z¢, — Zs, |[|Ze — Zs, ||

This viewpoint angle is required for the pose prior
approach in the next section.
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Fig. 3. lllustration of sub-image rectification.
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Fig. 4. Example image pairs that may cause serious matching errors
if the same descriptor is used without regard to pose. The yellow
rectangles show the most difficult parts.
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4 THE POSE PRIOR

As in other re-identification methods, we divide the
image of a human into horizontal strips or sub-
regions. In each strip, histograms of color and texture
information are extracted that form a feature vector
(discussed in Section 4.1).

Let X, and X, be two descriptors extracted from
the images of targets A and B, and W be a classifier
trained to distinguish between A and B (discussed
further in Section 4.3). A distance function between
the two descriptors can thus be computed as:

f(Xa, Xp) = WX, — X

While this approach is reasonable with images
taken from the same point of view, when matching
a pair of images of the same person from different
viewpoints (e.g., 0° and 90°), the descriptor distance
is likely to be large. Several examples of this problem
are shown in Figure 4.

Obviously, different viewpoints need to be consid-
ered differently, which motivates our proposed algo-
rithm. We define a “pose prior”, which is used to
make the descriptor distance invariant to viewpoint
changes, as represented by a new distance function:

fla,Tp) = WX (Lo, 0a) — X (I, 03)] ®)

in which I, and I, are the images of targets A and B.
0, and ¢, are the estimated viewpoint angles corre-
sponding to targets A and B. X (I, 0) is the converted
descriptor of I with respect to the pose prior for angle
6. Instead of directly extracting descriptors for each
strip of the target, X (I, §) weights the contribution at
each pixel of a strip based on the estimated pose of
the target, as described in detail in Section 4.2.

4.1

Our approach to feature and descriptor extraction for
a given image is similar to Gray and Tao [20] and uses
color and texture histograms, which are widely used
as features for human re-identification [40], [49], [50].
We first divide each image of a subject into six hori-
zontal strips after rectifying the image as described in
the previous section, so that the horizontal strips are
parallel to the ground plane.

Since we want to re-identify human targets across
different cameras, the color features used to represent
the target should be invariant to lighting changes.
Since RGB histograms are a poor choice [45], we use
three histograms over the transformed RGB space
defined as (R',G’, B’) = RU:R, Gaé‘c, BUgB
Kir,c,By and o(r ¢ B} are the mean and standard de-
viation of each color channel respectively. This trans-
formation is only applied to the person rectangles.

HSV histograms are also known to be descriptive
for re-id and stable to lighting changes; thus we also
include one histogram of the hue multiplied by the
saturation at each pixel (since hue becomes unstable
near the gray axis and its certainty is inversely pro-
portional to saturation).

To represent texture, we compute the histograms of
responses at each pixel of a strip to 13 Schmid filters
and 8 Gabor filters [20]. In total 25 types of features (4
color and 21 texture) are computed at each strip pixel.
We then compute the histogram over each feature in
the strip using 16 bins, resulting in a 25-16 = 400-
dimensional descriptor for each strip.

Features and Descriptors

), where

4.2 Learning the Pose Prior

We estimated the pose prior mappings required for (3)
offline using laboratory training data (independent of
the actual testing scenario). That is, for the i*" training
subject, we acquired n; images taken from different
angles 0:. These are used to estimate the relationship
between the front view image of a subject and their
appearance from angle 6 € [—180°,180°]. That is, we
learn how to map the appearance of each strip of
a target at angle 6 to be directly comparable to the
corresponding strip from the front view.

In our experiments, we trained the pose prior based
on 20 subjects and 6-10 images of each subject (one of
which is the front view at § = 0). All the images are
normalized to 128 x 64 pixels. We estimate the angle of
each image automatically with the method introduced
in Section 3. Figure 5 illustrates example images used
in learning the pose prior.

We first extract the descriptors for the six horizon-
tal strips of the front view image, denoted Xp =
{xL,...,x%}. Now we consider a sample image I,
at angle 6, and denote its strips {I},...,I5}. We let
I} (u) be a patch of pixels in strip k centered around
column u (in our experiments we chose the patches
to be 10 pixels wide). Note that the patches overlap,
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Fig. 5. Example images used in learning the pose prior.
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Fig. 6. Learning the pose prior.

and we only consider values of u where a full-sized
patch exists (i.e., not along the left and right edges
of the image). We denote x%(u) as the descriptor
computed within the patch centered around column
u in strip k at pose angle . Please note that no
background subtraction has been done in any step of
the algorithm.

We now form a function of u that relates how
similar the descriptors inside each patch are to the
entire descriptor of the front view at this strip:

pi () = S(x, x§ (u)) )

where § is a similarity measure. Any histogram sim-
ilarity measure can be used. In this paper we used
the covariance between the two descriptor vectors,
normalized to the range [0,1]. The intuition is that we
want to measure the similarity in shape of the two
descriptors. If the pose angle 6 is near 0 (that is, the
image is close to a frontal view), then we expect pf(u)
to be high for most values of u, while if § is near 90°
for example, we expect pf(u) to be high for u towards
the right side of the image (i.e., corresponding to
pixels on the front of the person) and low elsewhere.
Figure 6 illustrates the idea.

Figure 7 illustrates that as we compute these func-
tions of u for each of several angles {9;, j=1,...,n;}
for subject i, we can project them onto a circle to
create the pose prior Py. That is, we wrap the collected
similarity measures around a cylinder (the position
and radius of which are computed from the apparent
size of the person in the image, the fact that they are

Fig. 7. Complete pose prior generated by projections of pose priors
calculated from multiple viewpoints.

orthogonal to the ground plane, and the calibrated
camera).

We obtain a different pose prior for each of the
N training subjects; we merge them at each angle
¢ independently by taking the mode (i.e, the center
value of the bin with highest frequency) of the distri-
bution formed by the samples {P},..., PN}. When
multiple bins have the same frequency, we simply
average the modes if they are close to each other.
In the rare case that the differences between modes
are noticeable, which suggests that the robustness of
the features to changes in viewpoint angle is low at
this location, we choose the smallest one to be safest.
The overall algorithm of learning the pose prior from
training data is shown in Algorithm 1.

Algorithm 1: Learning the pose prior

Input: N: number of people used for training
{n1,...,nn}: the number of images for each person
I.i:Image of front view, i = 1..N
I,i,j=1,...,n;: Image taken from viewpoint 6; for person i
Oﬁtput: Pose prior Py
fori=1to N do
Estimate the descriptors X for I:;
for j =1 to n; do
‘ Calculate py: with (4);
end !
for 6 = —180 to 180 do
‘ Find P} as Py where ¢} = argmin |0 — 0%];
end
end
for § = —180 to 180 do
Find Py by taking the mode of the distribution formed
by {p1a7pélv}/

end

Figure 8 shows examples of the trained pose prior
at 45, 90, 135 and 180 degrees.

4.3 Offline Training

After we learn the pose prior, we train a classifier
offline to form a general understanding of what fea-
tures are most discriminative for re-identification. As
described above, when extracting the descriptor for a
given image at an estimated angle, the pose prior Py
is used to weight the contributions of the columns of
each strip when calculating the histograms for color
and texture features.
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Fig. 8. Examples of the trained pose prior. It can be seen that the
results match our assumptions. For example, at 90 degrees, the
weights on the right side are much heavier than on the left side. At
135 and 180 degrees, the weights in the central area (i.e., the back of
the person) are significantly lower than in the neighboring areas. We
found this phenomenon to be generally caused by people carrying
backpacks.
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That is, the final descriptor for an image at esti-
mated angle 0 is Xy = {x!,...,x%}, where

i) = D X ()P

(u,v)€strip k

©)

where

(i) = 1 feature value at (u,v) is in bin i
X)W =190 otherwise

P} (u) is the trained pose prior for stripe k at column
u. The contribution of each feature is weighted by the
horizontal position u along the strip as a function of
the pose prior. The absence of a pose prior would
correspond to letting Pf(u) = 1 for all u.

The classifier training follows the standard ap-
proach [40]: that is, we want to maximize the norm
of a weight vector W subject to the constraints that
if dege = |x; — xi| is the absolute difference of
descriptors for two images of the same person i,
and dair = [x} — x;| is the absolute difference of
descriptors for images of two different people i and
[, then

WTdsame < WTddiff

for all possible pairs of same and different images.
We use the absolute difference of descriptors, since
it has been shown to yield more consistent distance
comparison results [49]. Figure 9 shows an example
comparison between descriptors of the same person
from different viewpoints with and without the pose
prior. We can see that the differences between some of
the features have been reduced, making the descrip-
tors more similar.

5 ONLINE LEARNING AND MATCHING

In this section, we introduce algorithms for online
descriptor extraction and discriminative feature learn-
ing. The online algorithm leverages the pose prior Py
and classifier W learned offline using training data in
the previous section.

Without Pose Prior N

ST | J LL JLMJL 2?

lLLLml“ hLmlJ. INUTURI

200 250 300

bt b Lk i L

0 50 100 150 200 250 300
Features

N ll

300
!

Fig. 9. The distance between descriptors of the same person from
different viewpoints is reduced by applying the pose prior. Without
the pose prior, the distance between the two descriptors is 1.4709,
which has been reduced to 0.9738 after applying the pose prior.
Without pose prior, the mean distance of all negative pairs containing
this person is 5.2815, which increased to 5.6369 with pose prior.

5.1

When we identify (or “tag”) a target for re-
identification online, we must first extract its descrip-
tors Xyp. However, at the time when the target is
tagged, or even during the whole time the target
was tracked in the current view, we may not be
able to exactly observe the front (0°) view of the
target. By using the pose prior, we can estimate these
descriptors. With the camera calibrated to the floor
plane, we can estimate the viewpoint angle 6. For a
target image taken from viewpoint 6;, we can estimate
X by weighting the feature histograms by the pose
prior as specified by (5).

Extracting Descriptors

5.2 Learning Subject-Discriminative Features

The classifier model we trained offline is a general
model, which is universal for every human. However,
learning discriminative features for the particular tar-
get being tracked may greatly boost the performance
of the re-identification. That is, we update the classi-
fier function to

f(d)=W'd+as'd (6)

where o is a weighting factor and s is a person-
specific weight on the descriptor. We first model the
distribution of each feature with a Gaussian, based on
offline training data; denote the mean and variance of
feature 7 in the descriptor X as /(i) and &():

0.
Z;'Vzl(l +cos )X
(Zjvzl cos %’) + N

0, ny.
SN (14 cos B)(X; — jili)?

(Z;Vd cos %J) +N

(i) = 7)

62(i) = ®)
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in which N is the total number of training samples
for all subjects in the training set, and X; and 6; are
the descriptor and viewpoint respectively of the j
training sample. Here, cos % is a weighting term for
images captured from different viewpoint angles 6;,
so that the front view 6; = 0 has unit weight and the
back view 6; = 180 has zero weight. During online
processing, once the target is tagged and descriptors
X r are extracted, we find the features i that have low
likelihood with respect to the offline Gaussian distri-
bution. That is, we find the person-specific features
that we would not expect based on the training data;
these are particularly discriminative for that person.
We explicitly determine s by first computing:

1= GXp(i),ai),6() G) <7
5(i) = 9

0 otherwise
in which the Gaussian function G(-) is normalized to
have height 1. For each dimension of a particular de-
scriptor, this approach calculates its “distinctiveness”
based on the Gaussian model learned from training
data. The lower the likelihood based on the training
model G(+), the more discriminative the feature is. In
our experiments, we used 7 = 0.1. After processing

all the features in Xy, we compute

S
O =
5]l

where o is the element product. Finally, we learn «
from the training data using

1
=T~ A 0 Tdsame < Td i
0,104 dmzmem ( * dur)

dairr €0q

s=W

o (10)

where Q; is the set of descriptor differences between
all pairs of the same person from the training set. Oy
is the set of descriptor differences between all pairs of
different people, where one of them is the target being
tracked. o can be viewed as the confidence in the
trained discriminative coefficient vector s. The better
that s is able to distinguish image pairs from different
people, the more confident we are, and the higher
the weight «. Figure 10 illustrates the process of
offline training and online learning of discriminative
features. Note that the discriminative features can be
learned with a single image. The overall process of
learning the classifier for the target is shown in Figure
11.

5.3 Matching and Identification

After extracting the descriptors X% and the discrimi-
native vector s of the target, the target may leave the
current view and enter another view. Now the task
becomes matching candidates in the view with the
target model.

First, by tracking the candidates, their viewpoints
are estimated using the approach at the end of Section

Offline Training Online Learning
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Fig. 10. lllustration of learning discriminative features.
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Fig. 11. Flowchart of learning and matching processes.

3. Using the pose of each candidate, we can decide
how the target model should be used to match the
candidates” descriptors. For a candidate with view-
point angle ¢, we have f(d) = (W + as)'d with
d = |X% — XS |, where X¢ is the descriptor of the
candidate, normalized to the front view using the pose
prior (5). The candidate with the highest matching
result f(d) is considered as the detection of the target.

6 EXPERIMENTAL RESULTS

In the following experiments, we applied the standard
protocol for the re-id problem. That is, each dataset
is randomly sampled so a certain number of person
images are taken as the training set, and the remaining
images form the testing set. The testing set is further
divided into a probe set and a gallery set. The gallery
set consists of one image from each person in the
testing set, while all other images are in the probe
set. The detailed training/testing number split will
be specified for each dataset, following the standard
splits from [49].

We use cumulative match characteristic (CMC)
curves to report the experimental performance, specif-
ically, the matching rate at rank n, where n € N. The
rank n matching rate specifies the percentage of probe
images that matched correctly with one of the top n
images in the gallery set.

We use RDC [49], RankSVM [40] and PCCA [37]
as our baseline comparison algorithms. These state-
of-the-art algorithms have been shown to have high
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performance, and they are metric learning techniques,
which are suitable for demonstrating the improve-
ment obtained through our algorithm. We applied the
publicly available source code of Zheng et al. [49] for
the RDC algorithm. We implemented the RankSVM
algorithm using the library published by Joachims
[26], which produces similar results as [40]. We also
implemented the PCCA [37] algorithm with the x?
kernel, using which we obtained the best and most
similar results compared with the original paper.
Some numerical results differ slightly from those
stated in the original papers.

We extensively tested our algorithms on the stan-
dard VIPeR [20], ETHZ [41], and i-LIDS MCTS [38]
datasets. These three datasets were validated with
similar configurations as in [49]. Note that since im-
ages from these datasets have only a small amount of
perspective distortion, they were processed without
rectification. We also use the recently proposed 3DPeS
[6] and SAIVT-SoftBio [9] datasets to evaluate the
performance gains for two key subcomponents of
the algorithm, as well as a challenging new dataset
collected at a US airport to evaluate our performance
in a real-world scenario.

6.1

The 3DPeS [6] dataset is built from a multi-camera
surveillance network with non-overlapping fields of
view on a university campus. While this dataset is
not yet widely used as a re-id benchmark, due to
the accompanying side information it is well-suited to
isolating the improvement brought by the rectification
and pose prior steps of the proposed algorithm.

3DPeS contains two sets of images extracted from
8 different camera views. The first set contains 199
individuals with a total of 606 images and includes
calibration for each camera. We refer to this set of
images as 3DPeS-1, and use it to evaluate the image
rectification method. The second set contains 193 in-
dividuals with a total of 1012 images and includes
corresponding foreground masks for each subject. We
refer to this set of images as 3DPeS-2, and use it to
evaluate the pose prior method.

To evaluate the benefit of sub-image rectification,
we randomly chose 99 people in the 3DPeS-1 dataset
as the training set, and used the remaining 100 people
as the testing set. We used RDC [49] as the baseline
metric learning algorithm. Figure 12 illustrates the
re-identification results with and without sub-image
rectification. We observed a 2-5% increase in matching
rate using the rectified images, indicating the value of
the approach.

We next compared the pose prior approach to a sim-
ple method using the foreground mask of the subject
when it is available. That is, the descriptors are only
computed over the foreground pixels, not the entire
rectangle. To evaluate the benefit of the pose prior, we

Evaluating Key Subcomponents

Effect of rectification

—+—Raw Images
—6— Rectified Images

I I I I L I
2 4 6 8 10 12 14 16 18 20

Rank

Fig. 12. The effect of sub-image rectification effect on 3DPeS-1, split
99/100.

randomly chose 95 people in the 3DPeS-2 dataset as
the training set, and used the remaining 98 people as
the testing set. We again used RDC [49] as the baseline
metric learning algorithm. Figure 13 illustrates the re-
identification results with and without the pose prior,
and with and without the foreground mask. We can
see that the pose prior visibly improves the matching
rate when the foreground mask is not available. When
the foreground mask is available, the matching rate
is much better than using the pose prior alone, but
can be further improved by applying the pose prior
to the foreground pixels. This experiment suggests
that foreground information should definitely be used
when it is available; however, this information is
not provided for the standard re-id benchmarking
datasets discussed next.

Effects of pose prior and foreground masks

80

@ ~
3 =)
T T

Matching Rate (%)

—+—original
—5—pose prior only

foreground mask only
—>—pose prior + foreground mask
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Fig. 13. The effects of the pose prior and the foreground mask on
3DPeS-2, split 95/98.

6.2 Performance on Benchmarking Datasets

We now demonstrate the matching rate improvement
of the proposed method compared to the baseline
algorithms, RDC [49], RankSVM [40] and PCCA [37],
illustrated in Figure 14, Figure 15 and Figure 16
respectively. Each CMC chart compares our pose
prior algorithm (baseline+PP), subject-discriminative
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feature selection (baseline+DF) and their combina-
tion (baseline+PP+DF) with the original algorithm.
Detailed numerical matching percentages are listed
in Table 1. Performance comparisons with additional
state-of-the-art algorithms are given in Figure 17 and
Table 3. We repeated all the experiments 10 times to
report averaged results. All the images are normalized
to 128 x 48 pixels in the VIPeR dataset, and 128 x 64
pixels in the ETHZ and i-LIDS datasets. We discuss
the results in more detail below.

6.2.1 VIPeR [20]

This dataset contains images of 632 people captured
by 2 cameras from different viewpoints. The major
challenges of this dataset are viewpoint change and
illumination variation. The VIPeR images are labeled
with viewpoint information that we used to train
the pose prior. (In all other experiments, we use the
pose prior trained with lab-based data as described in
Section 4.2.)

In the experiment, we first randomly picked 316
people for the training set, and the other 316 people
as the testing set. We also used the split of 100 people
for training set, and 532 people for the testing set. The
CMC curves of the three different baseline algorithms
in the latter case are shown in Figure 14a, 15a, and
16a respectively. It can be seen that both the discrim-
inative features and the pose prior improve the per-
formance. The pose prior improves the matching rate
by 3-5% in all cases, since in this dataset the image
pair for each person contains significantly differing
viewpoints. The VIPeR images are low resolution, so
the discriminative features do not appear to be very
distinctive for each person. However, for each split,
the combined techniques improved the overall results.
When the testing gallery size is 316, rank 1 of RDC
shifts from 15.66% to 19.43%, rank 1 of RankSVM
shifts from 15.78% to 21.35% and rank 1 of PCCA
shifts from 16.07% to 21.31%. When the testing gallery
size is 532, rank 1 of RDC shifts from 9.62% to 12.12%,
rank 1 of RankSVM shifts from 9.06% to 12.91% and
rank 1 of PCCA shifts from 8.28% to 11.25%.

6.22 ETHZ

This dataset consists of three video sequences cap-
tured by moving cameras in a street scene. Schwartz
et al. [41] extracted an image set of pedestrians to
perform appearance-based model learning, which es-
sentially converts it into a re-identification dataset.
The dataset includes 8555 images from 146 people.
Since the extracted images are captured from moving
cameras while people are walking, they contain illu-
mination variation and serious occlusion. The cropped
bounding box size also varies slowly as the person
walks from one point to another. We roughly ground-
truthed images into 5 viewpoint angles: 0, 45, 90, 135
and 180 degrees.

Instead of evaluating the three subsets of the ETHZ
dataset individually, we combined them into one
dataset as in [49], since ETHZ 2 and ETHZ 3 have
only 20-30 people each. Adopting the configuration
used in [49], we conducted the experiments with
testing gallery sizes of 70 and 120. As in [49], we
randomly picked 6 images from each person in the
training set. The CMC curves of the three different
baseline algorithms in the gallery-120 case are shown
in Figure 14b, 15b, and 16b respectively. Again, the
pose prior contributes the major improvement. Due
to occlusion and the inconsistent size of the person in
the image, the discriminative feature barely has any
improvement compared with the baseline algorithm.

6.2.3 I-LIDS

The i-LIDS MCTS [38] dataset is a real-world scenario
captured in a busy airport arrival hall by multiple
non-overlapping cameras. Zheng et al. [51] extracted a
re-identification dataset containing 476 images of 119
people, with an average of around four images per
person. The images undergo large viewpoint varia-
tion, severe occlusion and some illumination changes.
We roughly ground-truthed the images into the same
5 viewpoint angles as above.

In our experiments, we took the gallery sizes of
50 and 80, as in [49]. The CMC curves of the three
different baseline algorithms in the gallery-50 case
are shown in Figure 14c, 15c, and 16¢ respectively.
Again, the combined performance steadily improves
the results.

6.2.4 SAIVT-SoftBio

Bialkowski et al. [9] presented a new well-structured
dataset designed for person re-identification. The im-
ages are extracted from multi-camera surveillance
videos in a a real-world campus environment. This
dataset easily enables performance evaluation as a
function of different factors such as pose, viewpoint,
and lighting condition. The dataset contains 152 indi-
viduals, each of whom is captured by up to eight cam-
eras. Each individual is tracked from when they enter
a building until they leave the view of the surveillance
network. The dataset includes 64472 frames in total.
The frames with occlusion are omitted.

For our experiment on this dataset, we chose a
training set of 40 people and a testing gallery of
112 people. Since the dataset contains a massive
number of images, for each person in the training
set we randomly chose 6 images to perform metric
learning. The gallery set consists of one image from
each person in the test set; however, instead of using
all the remaining images, 50 images were randomly
selected from each person to form the probe set. To be
consistent with the other experiments, we learned one
metric from the entire training set. The pose of each
sub-image is precisely estimated using the proposed
algorithm in Section 3.2. The experimental results are
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Fig. 14. Ranking performance CMC curves on public datasets using RDC [49] based algorithms.
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Fig. 16. Ranking performance CMC curves on public datasets using PCCA [37] based algorithms.

shown in Table 2. Since camera calibration results
are available, we roughly estimated the ground plane
and applied rectification to all person rectangles. We
also computed the performance of metric learning on

the original images to evaluate the gains brought by
rectification.

6.3 Discussion

In general, we can see that both the pose prior and
the discriminative features improve the performance
of re-identification. Combining the two methods, the
proposed algorithm obtains the best overall results,
with the pose prior having the main contribution. The

discriminative features will be less stable when the
training set is small.

To further compare the performance of our al-
gorithm with state-of-the-art algorithms, numerical
ranking results from a larger selection of algorithms
are listed in Table 3. Please note that not all algorithms
provide results for each dataset or each split. The
most widely used benchmark in the community is
VIPeR with the testing gallery size of 316, which
can give a universal comparison with all algorithms.
The CMC curves are displayed in Figure 17. Our
algorithm significantly improves the baseline metric
learning algorithms and gives results potentially bet-
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TABLE 1
Result comparisons between the proposed algorithms and competitive algorithms. Each result shows the
percentage of the time the correct match occurred in the top & results for a given classifier, where & is the rank.

VIPeR ETHZ i-LIDS
Train/ Test 316/316 100/512 76/70 26/120 69/50 39/80
Method 1 [5[]10[2]1][5]1w0]2]1][5[10]2][1]5/[10[2]1]5][10[2]1]5]10]:20
RDC Comb. |19.4 |44.1|58.5|74.2]12.1[28.0(39.3(53.973.6 |88.9]/93.997.8 |64.9[82.988.9(94.843.1]66.8]78.3(90.7|35.6(57.3|69.6]825
RDC+PP 185 | 41.8 | 56.6 | 73.2 | 10.6 | 26.6 | 37.9 | 52.4 | 72.1 | 87.7 | 93.4 | 97.7 | 65.1 | 82.4 | 88.7 | 94.3 | 41.1 | 66.0 | 77.4 | 89.4 | 34.7 | 56.8 | 67.2 | 81.7
RDC+DF 17.1|40.6 [55.7 | 71.9 | 9.7 | 24.9 | 35.8|50.0 | 70.0 | 87.0 | 92.5 | 97.2 | 63.0 | 80.6 | 86.8 | 92.9 | 40.0 | 64.7 | 76.5 | 88.9 | 31.1 | 54.9 | 68.4 | 79.7
RDC [49] 15.7 [37.5[53.5|69.9 | 9.6 [23.5[35.1|49.5[69.0[858[92.2[96.9 |61.6|79.7[86.7[93.3|37.8|63.7 [ 75.1 | 88.4 | 32.6 | 54.6 | 65.9 | 78.3
SVM Comb. |21.4[45.9]60.5]75.912.9[30.5]42.4]57.2[74.3[88.0]93.2[96.362.7[81.588.3[94.0(37.6]60.6[73.6[87.7[32.352.8]66.1]80.3
SVM-+PP 19.4 [ 44.0 [ 59.0 | 74.3 | 11.4 [ 28.6 | 41.1 | 55.0 [ 72.9 | 86.8 | 92.3 | 96.1 | 62.5 | 81.0 | 87.2 | 93.4 | 36.1 | 62.7 | 73.1 | 85.9 | 31.8 | 51.1 | 63.0 | 79.3
SVM+DF 18.7 [42.2 | 56.5 | 73.4 [ 10.1 [ 30.3 | 38.7 | 53.2 [ 71.2 [ 85.9 | 91.4 | 95.4 | 61.3 | 78.8 | 85.5 | 92.6 | 33.1 | 58.6 | 71.5 | 87.5 | 29.5 | 52.0 | 65.6 | 78.7
SVM [40] 158 (407 [55.9 719 | 9.1 [25.8[38.0|52.4 [ 69.4 | 86.3|90.7 [ 94.5 | 60.6 | 77.5 [ 85.1 [ 92.0 | 31.2 | 55.7 | 69.6 | 85.0 | 27.5 [ 48.5 | 61.5 | 77.3
PCCA Comb. |21.3[45.8]62.6 [79.7[11.3 [ 25.3]37.0 [ 52.3 [ 71.6 [ 88.8] 94.5 [ 98.1 [ 63.4 [ 79.4 | 86.4 | 93.3 [ 35.2[ 61.6 | 76.5 | 90.2 | 31.5 | 52.1 | 64.7 | 80.8
PCCA+PP 19.8 | 45.4 | 61.7 | 79.5 | 10.4 | 24.4 | 36.0 | 51.9 | 70.3 | 87.9 | 93.9 | 97.8 | 62.2 | 78.4 | 85.7 | 92.6 | 33.8 | 60.1 | 75.4 | 89.4 | 29.8 | 51.0 | 64.6 | 80.5
PCCA+DF 17.3|43.6 | 60.6 | 78.3 | 8.73 | 22.8 | 34.7 | 50.8 | 67.7 | 86.8 | 93.3 | 97.6 | 60.2 | 75.9 | 83.5 [91.2 | 31.2 | 58.5 | 74.5 | 89.1 | 28.9 | 50.7 | 64.1 | 79.8
PCCA [37] 16.1]41.8[59.8(77.3[8.28]223[34.0(49.6 [ 659 |85.6 | 92.6 |97.8 587 | 74.8(83.0 [91.1]29.5|56.0 728 [ 88.6]26.7 [48.6 | 624 | 79.2
ITM [14] 11.3[31.4[458[63.9] 42 [11.1[17.2[24.6 [ 56.3[80.7 [ 88.6 [ 94.1 [ 43.1 [ 66.0 | 76.6 | 86.8 [ 29.0 [ 54.0 [ 70.5 [ 86.7 [ 21.7 [ 41.8 [ 55.1 [ 71.3
AdaBoost [20] | 8.2 [24.2(36.6 | 52.1 | 42 [13.0(20.2 |30.7 | 65.6 | 84.0 | 90.5 | 95.6 | 60.7 | 78.8 | 85.7 | 92.0 | 29.6 | 55.2 | 68.1 | 82.4 | 22.8 | 44.4 | 57.2| 70.6
L'-norm 5.8 |14.3[21.3[32.7| 5.1 |11.1|15.6 | 24.1 |56.4 | 77.1 | 85.1|92.1 | 51.2 | 71.2|79.1 | 86.7 | 18.8 | 41.7 | 57.9 | 75.9 | 14.8 | 33.4 | 46.0 | 62.7
L2-norm 53 [13.4(20.1|324| 5.1 [10.7(15.2 | 24.6 | 55.8 | 76.5 | 84.9 | 92.2 | 51.1 | 70.3 | 78.6 | 86.5 | 16.0 | 38.3 | 52.5 | 71.4 | 13.7 | 31.7 | 44.0 | 58.7

TABLE 2 TABLE 3
Re-identification results on the SAIVT-SoftBio dataset. Rank matching rate comparison on VIPeR dataset,

with training size = 316, testing size = 316.
Method 1 5 10 20
RDC+PP+DF 223 33.6 40.2 54.9
RDC+PP 20.7 315 389 522 Method 1 5 10 20
RDC+DF 203 30.8 383 515 L'-norm 5.8 143 21.3 327
RDC 18.5 28.5 36.3 48.1 IT™ [14] 11.3 314 45.8 63.9
RDC (not rectified) 15.9 25.7 34.8 47.6 RDC [49] 15.7 384 53.9 69.9
SVM+PP+DF 23.9 343 40.1 52.8 SVM [40] 16.5 36.3 52.0 68.3
SVM+PP 2”1 32.5 39.1 50.4 PCCA [37] 16.1 41.8 59.8 77.3
SVM+DE 19.9 30.3 38.2 51.3 SDALF [17] 19.9 38.9 49.4 65.7
SVM 19.2 28.9 35.2 47.7 CPS [11] 21.8 44.0 57.2 71.0
SVM (not rectified) 16.3 25.8 31.9 432 eBiCov [34] 20.7 42.0 56.2 68.0
PCCA+PP+DF 214 382 50.9 713 eLDFV [35] 22.3 47.0 60.0 71.0
PCCA+PP 20.3 38.4 477 67.2 L'-norm+PP+DF 9.5 16.2 23.6 34.7
PCCA+DF 18.9 35.2 46.9 64.5 RDC+PP+DF 19.4 44.1 58.5 74.2
PCCA 16.1 324 445 61.2 SVM+PP+DF 214 459 60.5 75.9
PCCA (not rectified) 14.3 29.8 421 59.9 PCCA+PP+DF 21.3 45.8 62.6 79.7

ter than current state-of-the-art algorithms. Figure 17
To further illustrate the intuition behind our

also includes a comparison to using the raw L' norm
between descriptors, with and without the pose prior
and discriminative features, in the absence of any
metric learning. We can see that metric learning is
definitely required to achieve competitive re-id per-
formance.
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Fig. 17. Performance comparison on VIPeR dataset, with the split of
316/316.

method, we describe an example showing the real
improvement from the baseline algorithm. In Figure
18, the leftmost column is the probe image, and the
rows illustrate the baseline algorithm, the result of
applying discriminative features, applying the pose
prior and applying both. Originally the correct per-
son in the gallery is at rank 10; with discriminative
features, it jumps to rank 4. If we look at the woman
in the probe image, the discriminative features could
be, for example, the clear separation between the torso
and legs, the dark coat, and the pinkish trousers. By
applying person-specific features, some people with
simple-colored clothing, or a white pattern on their
shirt are left behind. If we only add the pose prior, not
only does the correct image shift to rank 2, but more
side-view images also move to higher rank, because
unrelated parts of the images play a less significant
role in the feature vector. For example, the person at
rank 4 in the first row, who got to rank 2 in the second
row, doesn’t even appear in the third row. The pose
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Fig. 18. Improvement brought by the proposed algorithms on one
example from VIPeR.

prior can put less weighting on his/her backpack,
which may be the main reason keeping him/her at
top ranks in the first 2 rows.

6.4 Airport Surveillance Camera Experiment

We also tested our re-identification algorithm using
video collected from a surveillance camera network at
a medium-sized US airport. We analyzed three syn-
chronized video streams from this camera network,
with relative positions sketched in Figure 19. We select
a target in one view, and then automatically extract
descriptors of the target and detect its reappearance
in the other cameras. We roughly calibrated all the
cameras using the embedded function from a Bosch
VIP1X encoder by manually labeling parallel lines on
the floor. In this way we rectify the sub-images and
obtain the pose angle of all the humans in the videos.

To demonstrate the performance of our algorithm,
we collected cropped rectangles around people and
built a new real-world airport surveillance scenario
dataset. While the VIPeR dataset is designed to inves-
tigate viewpoint variation, it only has 2 images per
person, and the background condition is also com-
paratively good. In our airport dataset, each person
has multiple images with large viewpoint variation.
Moreover, the surveillance cameras installed in the
airport produce fairly low quality, low resolution
video with serious illumination changes compared to
other datasets. Some sample images are shown in
Figure 19.

We extracted 113 people from the video recorded
by the three cameras in Figure 19. The first 88 people
have a total of 6 images per person across the 3 videos,
while the other 25 people have between 1 and 15
images. In total, there are 625 images in this dataset.
In this experiment, we applied the pose prior with
two different sets of pose angle estimates to evaluate
how the accuracy of the pose estimate affects re-id
performance. In the first set (PP1), as we do for the
standard datasets, the estimated pose of each image is
categorized into one of five view angles: 0, 45, 90, 135

and 180 degrees. In the second set (PP2), unquantized,
more accurate pose estimates are used. This dataset
will be available for download from our website.

3&:}” ‘Camera 3
\

Concourse 2

| Office

H :

] Camera 1

Camera 2

C—
Camera Camera Field Passenger No-Turning-
of View Flow Back Line

Fig. 19. Floor plan of the new airport camera network used for
human re-identification, and sample images in three camera views,
with large viewpoint and illumination variation.

We conducted experiments on this dataset follow-
ing a similar protocol to the previous experiments. We
chose 33 people out of the first 88 (as they appeared in
all views) to form the training set. The testing gallery
set consists of one image from each of the remaining
people, which gives 80 images in total. The remaining
images of the first 88 people are used as probe set.
Again, we applied RDC, RankSVM and PCCA (both
unrectified and rectified) as the baseline algorithms,
and then applied the proposed improvements. The
results are shown in Table 4 and CMC curves in Figure
20.

We can see that our algorithm boosts the base-
line algorithms’ performance significantly, especially
at lower ranks. For example, rank 1 of RDC is im-
proved from 11.16% to 21.85%, rank 1 of SVM is
improved from 11.01% to 21.75% and rank 1 of PCCA
is improved from 13.23% to 24.08%. The pose prior
still makes the main contribution. The images with
large viewpoint variation easily benefit from our al-
gorithms. With the person-specific feature selection,
the effects of illumination change and noise in the
images are also suppressed. We can see that with more
accurate pose estimates (PP2), slightly better re-id
performance can be obtained. However, the algorithm
does not highly depend on accuracy of the pose
estimates.

7 CONCLUSION

We proposed a new pose prior technique that can
effectively leverage the correlation between images
from different viewpoints, significantly improving re-
identification performance. Moreover, with the dis-
criminative feature approach, the distinctiveness of a
person can be better highlighted. Experimental results



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, OCTOBER 2013 13

Airport dataset
T T

Airport dataset
T T T

T T T T 2] T T T

Matching Rate (%)

O swM w0

Airport dataset
T T T T T T T T T soF T T T
1]
70t
70F
6ol
— — 60
2 &
o o
g” 8 wf
o =)
£ £
§ wf 1 € wf
15} 15}
= =
30r - - A 30
O RDC
RDC+PP
20 * RDC+DF f 205
O RDC+PP+DF
S 2 4 6 8 10 12 14 16 18 20 S 2 4 6 8
Rank
(a)

o PCCA
SVM+PP PCCA+PP
* SVM+DF - * PCCA+DF
O SVM+PP+DF O PCCA+PP+DF
12 14 16 18 20 ) 4 6 8 0 12 14 16 18 20
Rank
(b) (©

Fig. 20. Ranking performance CMC on airport dataset, with training size = 33, testing gallery size = 80. (a) Based on RDC (b) Based on
RankSVM (c) Based on PCCA. The results shown here are based on raw pose estimates (corresponding to PP2 in Table 4).

TABLE 4

Re-identification results on the airport dataset.
Method 1 5 10 20
RDC+PP2+DF 21.85 42.00 57.37 77.11
RDC+PP1+DF 20.72 41.04 56.31 76.08
RDC+PP2 20.00 39.75 55.91 75.81
RDC+PP1 18.94 38.60 54.71 74.89
RDC+DF 17.14 37.44 53.04 73.86
RDC 13.82 34.28 51.34 73.32
RDC (not rectified) 11.16 32.08 48.92 70.17
SVM+PP2+DF 21.75 46.28 62.05 81.19
SVM+PP1+DF 20.55 45.07 61.10 80.08
SVM+PP2 19.60 44.47 62.11 80.27
SVM+PP1 18.38 43.37 60.87 79.21
SVM+DF 17.20 42.05 5791 78.27
SVM 13.26 39.82 57.30 77.36
SVM (not rectified) 11.01 37.19 54.81 73.53
PCCA+PP2+DF 24.08 55.48 71.93 86.51
PCCA+PP1+DF 2297 54.14 70.61 85.31
PCCA+PP2 20.29 54.57 71.51 86.51
PCCA+PP1 19.28 53.30 70.66 85.23
PCCA+DF 16.98 51.64 68.91 84.58
PCCA 15.05 50.05 68.52 84.05
PCCA (not rectified) 13.23 47.98 66.93 82.73

on challenging datasets suggest that the proposed
algorithm can significantly improve performance and
robustness in real-world re-identification problems
with lighting and viewpoint changes. We note that
some newly proposed metric learning algorithms [24],
[37] claim higher performance than the ones we used
for comparison. We plan to combine our proposed
algorithm with such metric learning algorithms, with
the hope that the re-id performance can be further
elevated.

In a more general scenario, the proposed algorithms
can be extended by using two pose priors correspond-
ing to the front view and back view of a subject. For
each person, both the front and back views can be
estimated, along with measures of confidence in the
two views based on the estimated pose. As we track
the target and observe more images, the descriptors
of the front and/or back views can be updated if
the incoming image has a higher confidence than the
current confidence index.

The performance of the proposed algorithms may
be degraded when the appearances of all the candi-

dates are similar, or if they move in unusual patterns.
To address these issues, future work also includes
adding dynamic characteristics to descriptors and
continuously learning discriminative features. We also
plan to investigate calibration-free pose/viewpoint
estimation to make the algorithm more general.
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