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Abstract

Over the past ten years, human re-identification has received increased attention from the com-
puter vision research community. However, for the most part, these research papers are divorced
from the context of how such algorithms would be used in a real-world system. This paper describes
the unique opportunity our group of academic researchers was given to design and deploy a human
re-identification system in a demanding real-world environment: a busy airport. The system had to
be designed from the ground up, including robust modules for real-time human detection and track-
ing, a distributed, low-latency software architecture, and a front-end user interface designed for a
specific scenario. None of these issues are typically addressed in re-identification research papers,
but all are critical for an effective system that end users would actually be willing to adopt. We detail
the challenges of the real-world airport environment, the computer vision algorithms underlying our
human detection and re-identification algorithms, our robust software architecture, and the ground-
truthing system required to provide training and validation data for the algorithms. Our initial results
show that despite the challenges and constraints of the airport environment, the proposed system
achieves very good performance while operating in real time.

1 Introduction

Large networks of cameras are ubiquitous in urban life, especially in densely populated environments
such as airports, train stations, and sports arenas. For cost and practicality, most cameras in such net-
works are widely spaced, so that their fields of view are non-overlapping. Automatically matching ob-
jects, especially humans, that re-appear across different cameras in such networks is a key research ques-
tion in computer vision (e.g., [5, 13, 34]).

In recent years, the fundamental research question has been distilled into the human re-identification
or re-id problem. That is, given a cropped rectangle of pixels representing a human in one view, a re-id al-
gorithm produces a similarity score for each candidate in a gallery of similar cropped human rectangles
from a second view. Computer vision research in re-id largely focuses on two issues. The first is feature
selection [2, 9, 29, 36], i.e., determining effective ways to extract representative information from each
cropped rectangle to produce descriptors. The second is metric learning [3, 23, 26, 27, 38, 42], i.e., de-
termining effective ways to compare descriptors from different viewpoints. Feature selection and metric
learning should work together so that images of the same person from different points of view yield high
similarity while images of different people yield low similarity. Re-id algorithms are typically validated
on benchmarking datasets agreed upon by the academic community, notably the VIPeR [9], ETHZ [29],
and i-LIDS MCTS [32] datasets.

However, feature selection and metric learning only represent two aspects of creating an effective
real-world re-id algorithm. In practice, a re-id system must be fully autonomous from the point that
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an end user draws a rectangle around a person of interest to the point that candidates are presented to
them. This implies that the system must automatically detect and track humans in the field of view of all
cameras with speed and accuracy. The candidates in the re-id gallery in practice are thus automatically
generated and are typically much lower-quality than the hand-curated gallery of a benchmark dataset;
in fact, many candidate rectangles may not even represent humans! Furthermore, in a typical branching
camera network, the camera in which the target reappears is unknown, so there are actually several sep-
arate galleries to search. The timing of the reappearance is also unknown; the galleries will be constantly
updated with new candidates over the course of minutes or hours instead of presented to the algorithm
all at once.

Additionally, the deployment of a re-id algorithm in a real-world environment faces many practical
constraints not typically encountered in an academic research lab. In contrast to recently-purchased,
high-quality digital cameras, a legacy surveillance system is likely to contain low-quality, perhaps even
analog, cameras whose positions and orientations cannot be altered to improve performance. The video
data collected by cameras in the network is likely to be transmitted to secure servers over limited band-
width links, and these servers are likely to have limited storage since many cameras’ data must be com-
pressed and archived. These servers are also likely to be closed off from the internet, so that any algo-
rithm upgrades and testing must be physically done on-site. Since the algorithm must run autonomously,
a robust, crash-proof software architecture is required that takes advantage of any possible computa-
tional advantage (e.g., parallel or distributed processing) while still guaranteeing low latency. On the
front end, the algorithm must run in real time, updating a ranked list of matching candidates as fast as
they appear in each potential camera, and the results must be presented to the user in an easy-to-use,
non-technical interface.

This report describes the unique opportunity our team had to design and deploy a real-world re-
identification algorithm in an airport, in which we had to surmount the above challenges. We call this
implementation of re-id “tag-and-track”, since the system begins with the user tagging a person of in-
terest in one camera, and attempts to track them throughout the broader camera network at the airport
in real time. We begin by describing important practical considerations of the airport environment in
Section 2. Section 3 describes our solutions to the human detection and tracking, feature selection,
and metric learning problems for re-id. These algorithms are implemented in a modular, low-latency
software architecture based on the open standard Data Distribution Service (DDS) middleware [24], de-
scribed in Section 4. To train the computer vision algorithms for the airport cameras and validate our
results on stored data, we undertook a substantial semi-automated ground-truthing effort, discussed in
Section 5. Sections 6 and 7 report experimental results from the on-site system currently deployed at our
airport testbeds. Section 8 includes discussion and plans for future work. Section 9 briefly summarizes
the conference and journal publications supported by Task Order 5.

2 Designing a “Tag and Track" System for CLE

In this section we present an overview of the real-world challenges we faced when designing and im-
plementing a “tag and track” surveillance system for the Cleveland Hopkins International Airport (CLE,
Cleveland, Ohio, USA). The system was designed to assist Transportation Security Administration offi-
cers (TSOs) monitoring CLE using their existing surveillance camera network.

The specifications for the system demanded the ability to manually “tag” a person of interest in a
video feed, and automatically track the tagged individual across the camera network, in real time. Thus,
the system was designed with a front-end user interface to allow a TSO to select a video feed and tag an
individual. In addition, the system was designed to be able to detect possible candidates in the remaining
views, track and compare them against the tag, and present the results to the TSO in a visual interface in
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a timely fashion.
The design of the “tag and track" system incorporates several modules addressing challenging prob-

lems in computer vision, such as pedestrian detection, tracking, and re-identification. These modules
need to work in parallel and communicate with each other, reliably, in real time, and use data from the
existing surveillance video network. As described next, these requirements imposed additional chal-
lenges that had to be addressed while designing, implementing, deploying and testing the system at the
CLE airport.

Over the course of the project, teams of Rensselaer and Northeastern students visited CLE for six
multi-day visits to plan, install, and test the camera placement, computer vision algorithms, and system
architecture.

2.1 Data Transfer, Storage, and Collection

Figure 1 illustrates a high-level overview of the “tag and track” system, showing the data flow across
its components. An important characteristic of airport security systems is that, unlike most traditional
surveillance networks, the data must be always transmitted through secure high-bandwidth networks. As
a result, the whole system needs to work in a local Ethernet with no access to the outside Internet. That
is, only workstations connected to this local Ethernet are allowed access to the video data. The impact of
this fact on the design process of the system was a very significant increase in cost, both in terms of time
and dollars. Since this policy precludes remote debugging and testing of the software, the design cycle
consisted of first collecting small sets of data on-site, developing and testing software at the lab using
these recorded datasets, and making trips to CLE to install and test the software on-site. Furthermore,
it should be noted that due to the sensitive nature of the data, all recorded data had to be first approved
by the airport authorities before it could be taken to the labs, severely limiting the amount of data that
could be collected for our purposes.

...

...

...

Analog
Cameras

Video
Encoders

Digital Cameras

Event Logging
Software

Tag & Track
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Application Server

Data Server
Network Video Recorder

Video

Database

Figure 1: High-level system design of our airport human re-identification solution.

The camera network at the CLE airport, like most real-world networks, is equipped with a heteroge-
neous mix of analog and digital cameras. Indeed, most of the existing infrastructure consists of analog
cameras, necessitating the installation of video encoders to convert their feeds to the H.264 standard
with a 704× 408 resolution at 29.97 frames per second. In particular, we used Bosch VIP X1 XF video
encoders for this purpose.

All the data and metadata generated by the Bosch encoders is transmitted through the secure net-
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work to the analytic software modules and to an auxiliary research Network Video Recorder (NVR) ap-
plication that runs a data server to store encoded video data, which is overwritten approximately every
week. In addition, to facilitate systematic performance evaluation, every tenth frame is recorded at the
processing workstation. As mentioned above, all the recorded data and events are reviewed by security
officers before they can be brought back to the lab for analysis. Finally, the core of the system consists of
the video analytic software developed to acquire video feeds directly from the encoders and to perform
the tracking and re-identification tasks in real time.

2.2 Poor Data Quality and Challenging Environments

Real-world surveillance data is more challenging than research oriented databases used to benchmark
algorithms for tracking and/or re-identification. Surveillance cameras used in large public spaces are
widely spatially distributed, so the network often has large “blind regions”. Moreover, unlike cameras
used in standard re-id databases, airport cameras are often oriented at sharp angles to the floor (∼45◦).

Unfortunately, many of the legacy analog cameras in the airport network provide poor quality video,
corrupted by heavy noise and often out of focus, as illustrated in the sample images shown in Figure
2. Additionally, illumination conditions can vary significantly from camera to camera and even for the
same camera (near windows) due to the time of day or weather conditions. Other factors that we found
particularly challenging include that in many places the floor is highly reflective, making the problem
of foreground detection harder, and that the videos show periodic temporal jitter that needs to be taken
into account during tracking [37].

Finally, airports can be crowded, making the tasks of pedestrian detection and tracking during heavy
traffic even harder. In particular, maintaining accurate trajectories for each person in this type of envi-
ronment can be very challenging. We discuss our strategies to address these challenges in Section 3.

Thus, successfully tracking a target across the airport network hinges on solving the challenging
problem of re-identifying a target using images with severe perspective distortion and taken from very
different viewpoints. This problem is complicated even further by the fact that the traffic flow of pedes-
trians in an airport is hard to predict with high certainty. In an airport, there are no predefined routes
since there are multiple alternatives to go from one location to another. Moreover, people can retrace
their steps, walk in or out through exits not covered by the camera network, spend long periods of time
in shopping or eating areas, or even change clothing while out of the view of the network. All of these
factors make it difficult to reliably use appearance or transit time models in this scenario.

2.3 CLE Tag-and-Track Testbeds

Over the course of two years, we built two testbeds in the Cleveland Hopkins International Airport (CLE)
to design and evaluate the developed re-id system. The first testbed includes five cameras (which pre-
viously existed in the CLE network) leading from the garage to the terminals, and the second testbed
(planned by ALERT researchers and installed for this express purpose) includes six cameras leading from
the security checkpoint to different concourses. A partial floor plan of the Cleveland airport in shown in
Figure 3, where the red dots represent garage testbed cameras and the yellow dots represent concourse
testbed cameras.

Garage Testbed. There are five cameras serially covering the area from the parking garage through
walkways to the terminals, shown in Figure 4. The resolution is 704× 528 pixels, and the frame rate is
30fps. It can be seen that two cameras near the final escalator have very limited fields of view and highly
distorted perspectives, so we did not use these two views in our testbed. The fields of view in the other
three cameras are fairly well-connected, although people can leave the scene in the camera containing
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Figure 2: Sample images from airport camera videos.
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Figure 3: Partial floor plan of the CLE airport. Red dots are garage dataset cameras, yellow dots are
concourse dataset cameras.
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the elevator. It is also worth pointing out that the glass windows around the walkways severely affect the
illumination conditions over the day, and the reflective floor is another difficulty.

Figure 4: Sample images from five cameras in the garage testbed.

Concourse Testbed. There are six cameras whose locations were chosen by researchers to acquire
better views for the purpose of re-id. Sample images are displayed in Figure 5. The cameras in this
set have higher resolution and frame rate, 768×432 pixels and 60 fps respectively. However, the image
quality problem still exists here, especially with the neon lights and reflective ground. The difficulty here
is that people do not take straightforward routes as was the case in the garage dataset. It is hard to predict
where people will reappear after the security checkpoint; they may walk around in the shopping area or
have a meal in one of the restaurants. Moreover, people are likely to change clothes at the checkpoint,
which means their appearance may change in those views.

3 Algorithm Overview

In this section, we describe the key computer vision aspects of our deployed system: human detection
and tracking, feature selection, and descriptor comparison for re-identification. Figure 6 illustrates the
main steps of the process.

3.1 Detection and Tracking

The first step is using mixtures of Gaussians (MoG) [31] to detect foreground pixels and group them into
blobs; the bounding boxes of these blobs define regions of interest (ROIs). ROIs with small sizes or im-
possible locations are discarded. Each viable ROI is input to the aggregated channel features pedestrian
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detector of Dollár et al. [8], as illustrated in Figure 7. This detector uses a boosted decision tree classifier
to rapidly generate pedestrian candidates. We found it was important to train a specific classifier for
each camera in the network to obtain good results, which was accomplished using pedestrian images
from each camera (obtained using the ground-truthing tool in Section 5) and randomly sampled back-
ground images (to create negative samples). The pedestrian detection runs at several scales within each
ROI, resulting in a set of candidate detections of different sizes within each foreground blob. Since our
system must run in real time, it was critical to restrict the candidate search to only viable ROIs, resulting
in a human detector that runs at about 100 frames per second.

Figure 5: Sample images from six cameras in the concourse testbed.

Figure 6: Block diagram outlining our human re-identification algorithm.
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Our approach to tracking the detected human candidates is twofold. First, we perform tracking-by-
detection in each frame as described above. Second, another set of candidate bounding boxes is gen-
erated in each frame by predicting the bounding box locations of tracked pedestrians from the previous
frame. This prediction is made by detecting low-level FAST corner features [28] in each previous bound-
ing box, removing features estimated to belong to the background [37], estimating the motion vector for
each feature with the KLT tracker [22], and averaging the resulting motion vectors to update the location
of the bounding box in the current frame.

The tracking-by-detection and motion-prediction bounding boxes are merged at the current frame
to produce a final set of human detections as follows. We compute the intersection of each tracking-
by-detection bounding box with each motion-prediction bounding box and find the maximum ratio be-
tween the area of intersection and the area of the smaller bounding box. The new tracking-by-detection
box is associated with the corresponding motion-predicted box if this ratio is above a predefined thresh-
old (in our experiments, we used 0.8); otherwise, it is used to initialize a new track. Motion-predicted
bounding boxes not matching any tracking-by-detection box in the previous frame are retained if both
their aspect ratio and location in the frame are plausible. Figure 8 illustrates the idea.

Overall, the detection and tracking algorithms are tuned to produce a large number of human can-
didates in each camera for the subsequent re-id algorithms; we err on the side of allowing false alarms
(i.e., poor detections or inaccurate tracks) as opposed to tolerating missed detections. This is important
since the re-id algorithm can never recover if the tagged person of interest is missed in a subsequent
camera, while we assume that occluded or poor-quality human detections will never rise to the top of
the rank-ordered re-id candidate list.

Figure 7: Pedestrian detection example using MoG foreground detection to reduce computational com-
plexity.

3.2 Re-identification

The re-identification process has three key steps. First, a feature descriptor needs to be extracted from
each candidate detection. Second, given a pair of descriptors Xtarget and X j (one from the tagged target
and the other from the j th candidate detection), we must compute an appropriate similarity score

s j = f (Xtarget,X j ) (1)

to compare them. Finally, by ranking the similarity scores {s j , j = 1, . . . ,n} in each frame, an ordered list
of “preferred” candidates to be shown to the user is generated.

For feature extraction, we adopted the approach of Gray and Tao [9], which is particularly suitable
for the low-resolution candidate rectangles generated in the airport system. The image is divided into
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Figure 8: (a) Tracking-by-detection bounding boxes from previous frame.(b) Predicted bounding boxes
using motion vector propagation from the previous frame (dashed, red) and new tracking-by-detection
candidates (solid, green). (c) Final bounding boxes for current frame created by merging the two detec-
tions.
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6 horizontal strips. Inside each strip, 16-bin histograms are computed over 8 color channels (RGB, HSV,
and CbCr) and 19 texture channels (including the response of 13 Schmid filters and 6 Gabor filters).
The histograms are concatenated to form a d−dimensional feature vector for each candidate, where
d = 2592.

Given a track of images for the target and each candidate, we extract features for each image as de-
scribed above. Let xi

t ∈Rd , i = 1, · · · ,n and xk
c j
∈Rd , k = 1, · · · ,m denote the n feature vectors of the target

and the m feature vectors of the j th candidate respectively. We then project each of these feature vectors

to a learned discriminative space using a projection matrix P ∈Rd̂×d . Specifically, x̂i
t = Pxi

t and x̂k
c j
= Pxk

c j
.

We then determine Xt ar g et ∈Rd̂ and X j ∈Rd̂ as the mean feature vector in the projected feature space for
the target and each candidate. Specifically,

Xt ar g et = 1

n

n∑
i=1

x̂i
t

X j = 1

m

m∑
k=1

x̂k
c j

Finally, the similarity score s j is computed as

s j = w>|Xt ar g et −X j | (2)

where w ∈ Rd̂ corresponds to a metric learned to compensate for the differences between the target
camera and the candidate camera. We next describe the procedure employed to learn the feature space
projection matrix P and the weight vector w.

To learn the projection matrix P, we employ Local Fisher Discriminant Analysis (LFDA). The goal of
the feature space projection is to find a discriminative space where samples from the same person are
close, whereas the samples from different people are far apart. LFDA is particularly suitable to our prob-
lem because of data multi-modalities resulting from tracking each person. Formally, given the gallery
feature vectors gi

j and the probe feature vectors pi
j of the j th person in the training set, we construct

the feature matrix F =
[

{gi
j } {pi

j }
]

. In LFDA, locality preserving projections [10] are used to ensure the

feature vectors of each person are close in the transformed space, thereby preserving the local structure
of the data. To this end, we define an affinity matrix A that captures the closeness of the feature vectors
F∗a and F∗b , where F∗a is the ath column of F. The k-nearest neighbors rule (k = 7) is used to determine
this closeness. The values of the affinity matrix are defined as

Aab =
{

1 if F∗a close to F∗b

0 otherwise

The within-class and between-class scatter matrices are then defined as

Sw = 1

2

N∑
a,b=1

Aw
ab(F∗a −F∗b)(F∗a −F∗b)>

Sb = 1

2

N∑
a,b=1

Ab
ab(F∗a −F∗b)(F∗a −F∗b)>

where Aw
ab and Ab

ab are defined as

Aw
ab =

{
Aab
nc

if class(F∗a) = class(F∗b) = c

0 if class(F∗a) 6= class(F∗b)
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Ab
ab =

{
Aab( 1

N − 1
nc

) if class(F∗a) = class(F∗b) = c
1
N if class(F∗a) 6= class(F∗b)

where nc denotes the number of available feature vectors for the person in the training set with index c.
Finally, the feature space transformation matrix P is learned as

P = ar g max
P

trace{(P>Sw P)−1P>SbP}

After learning the matrix P, we compute the mean feature vector for each person in the training set
as ḡ j = 1

n j

∑n j

i=1 Pgi
j and p̄ j = 1

m

∑m
i=1 Ppi

j .

To learn the weight vector w, we employ the RankSVM formulation of [27]. The core idea is to mini-
mize the norm of a vector w that satisfies the following ranking relationship:

w>(|ḡi − p̄i |− |ḡi − p̄ j |) > 0, i , j = 1,2, . . . ,K and i 6= j

where K is the number of people in the training set. The RankSVM method learns w by solving the
following minimization problem:

arg min
w,ξ

( 1
2‖w‖2 +C

K∑
i=1

ξi )

s.t . w>(|ḡi − p̄i |− |ḡi − p̄ j |) ≥ 1−ξi , ξi ≥ 0
(3)

where C is a margin trade-off parameter and ξi is a slack variable.
It should be noted that while the process of learning P and w is time-consuming, this is done offline.

On the other hand, the on-line re-id process is extremely fast since it only involves a vector inner product.

4 System Architecture

We approached the deployment of our re-identification algorithms at the airport with several criteria in
mind.

• Modular Architecture: The framework must define high-level functional blocks and the commu-
nication among them to allow the easy and reliable interchange of functional components as re-
search yields new algorithms and approaches.

• Real-time Operation: Communication and data transfer between framework components must
not prevent the real-time operation of the complete system.

• Task-level Parallelism: To perform full functionality in real time, the system must allow for the
framework components to operate in parallel while ensuring that all the modules are working syn-
chronously.

• Language-agnostic API: Efficient multi-institutional collaboration requires accommodating a va-
riety of code development environments. For example, the framework must support native and
managed processes written in C++ and C#.

• Real-time Logging: All results must be recorded to allow for later performance evaluation, without
inhibiting real-time operation.

• Simulated Environment: The framework must have the ability to simulate deployment using
recorded videos to enable reliability testing and algorithm performance evaluation prior to actual
deployment.
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For these reasons, we selected the open standard Data Distribution Service (DDS) middleware [24] to
handle interprocess communication and guarantee compatibility as new components are added to the
system. DDS is designed for real-time applications requiring low latency and high throughput.

Although our system uses shared memory exclusively, the physical transport used by DDS is config-
ured at runtime using a transport type-agnostic API allowing application components to be distributed
across multiple machines if necessary. To minimize communication overhead, DDS contains automatic
peer discovery and peer-to-peer data transfer without needing to run additional message brokers or
servers. Custom data structures are defined using an interface description language (IDL) that closely
resembles C++ class definitions. These structure definitions correspond to a common data representa-
tion that allows access from many programming languages including C++, C#, and Java.

DDS uses a loosely-coupled publish-subscribe communication model. In this model, participating
processes contain objects for publishing (writing) and subscribing to (reading) data from a global data
space managed by DDS (Figure 9). The global data space is organized into a number of “topics" defined
by a unique pair of name and IDL-defined data type. To access the global data space, programs merely
inform DDS of the topic name and data types they would like to read and/or write to; the creation of new
topics is handled automatically by DDS. From a programming perspective, the behavior of a participant
in the publish-subscribe model is independent of other participants. For example, the process respon-
sible for publishing video frame data does not need to account for which or how many other processes
are reading the data. DDS is configured at runtime by reading an XML file containing Quality of Service
(QoS) policies to control aspects of how and when data is distributed by the middleware. QoS can con-
trol attributes such as the maximum size of global data space or how much data for each topic can be
available to subscribers to read. These attributes of DDS help ensure reliability as new components are
added while keeping the framework flexible enough to handle new methods from our research. In ad-
dition, the DDS implementation provides tools for the recording and playback of DDS communications
allowing us to examine not only the re-id results but any communication within the framework.
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Figure 9: Block diagram showing participating entities in the publish-subscribe communication model
used by DDS.
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Figure 10 illustrates the DDS architecture corresponding to the re-identification software deployed
on a three-camera system currently installed at the airport. Each block corresponds to a separate con-
stantly running process performing the algorithms described in Section 3.

In particular, the processing pipeline contains the following modules:

1. Candidate Detection: The first module in the processing pipeline publishes the single frame loca-
tions of pedestrians detected in the video source.

• Subscribes to: Video frames.

• Publishes: Single frame candidate locations.

2. Candidate Filtering: This module is used for additional processing of candidates prior to re-id,
such as tracking or grouping detections known to be the same person. By subscribing to new
target announcements from the Re-identification module, this module can also act as a temporal
filter for potential candidates.

• Subscribes to: Video frames (optional); Candidates from Candidate Detection module or other
instances of Candidate Filtering module; New target announcements from the Re-Identification
module (optional).

• Publishes: Candidate and Target locations.

3. Feature Extraction: This module is responsible for preparing potential candidates and targets for
re-id by calculating a vector of feature values as described in Section 3.2. Since feature extraction
is generally the most computationally intensive task in re-id, it is performed only on the most
promising candidates that have passed the spatial and temporal filtering in the previous modules.

• Subscribes to: Video frames (optional); Candidates and targets from Candidate Filtering mod-
ule.

• Publishes: Candidate and Target locations with identifying feature vectors.

4. Re-Identification: The last computer vision module is responsible for generating the final re-id
results. It uses the feature vectors calculated by the previous module to compare the active target
with all candidates from each camera as described in Section 3.2, and provides a sorted list and
difference score for each candidate.

• Subscribes to: Video frames (optional); Candidates and Targets from Feature Extraction mod-
ule.

• Publishes: New target announcements; Re-id results.

5. Graphical User Interface: The final module is responsible for visualizing the re-id results using im-
ages of the target and top candidates as well as any other desired information regarding candidates
and targets (e.g., video display with candidate bounding boxes). This module does not publish any
data.

• Subscribes to: Video frames; Candidates and Targets from Feature Extraction module; Re-id
results.
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Figure 10: Block diagram showing the re-id system architecture, including processes for Candidate De-
tection (green), Candidate Filtering (purple), Feature Extraction (blue), and Re-Identification (red).

5 Data Collection and Ground Truth Generation

To develop the computer vision algorithms and system architecture described here, we required a com-
prehensive video footage database with high-accuracy ground truth labels for hypothesis validation, pa-
rameter tuning, and performance evaluation. In particular, we required accurate bounding boxes for
pedestrians in thousands of frames of videos from several cameras, and when possible metadata such as
gender, clothing color, motion type, and interactions with others that might be useful for future analysis.

One strategy to achieve accurately annotated visual content is to divide the labeling task into many
smaller tasks executed by a large number of people enlisted through, e.g., crowdsourced marketplaces
[30, 33]. However, crowdsourcing is not a viable practice for labeling sensitive, proprietary videos. There-
fore, we opted to employ in-house, specially trained personnel to generate reliable ground truth. In our
case, the limiting factor is the time required for bounding box delineation, requiring up to 3.5 hours to
process one video minute for a single pedestrian without any computational intervention.

For this purpose, we designed a computer-aided ground truthing system called “Annotation Of Ob-
jects In Videos (ANchOVy)”, a toolbox for cost-effective surveillance footage labeling. ANchOVy’s unified
graphical user interface, shown in Figure 11, was designed for an ergonomic, low-latency video labeling
workflow and includes features to safeguard against worker errors (e.g., automated label propagation,
continuous auto-save function, role-based content control).

ANchOVy first automatically extracts short trajectories of moving objects in the video by using a fea-
tureless tracking-by-detection method [12] implemented on graphics processing units [11]. Then, the
human worker identifies and labels an object of interest in a highly sparse set of frames. Next, the missing
labels are automatically inferred by connecting the previously collected short trajectories using Hankel
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matrices of the trajectories [7]. The worker inspects the inferred results and can take corrective actions,
which will trigger a recalculation and update using the added label information. This procedure is re-
peated until a satisfactory label quality is achieved. Finally, the worker assigns a unique global identifica-
tion number to each tracked pedestrian to facilitate algorithm design and validation for re-identification,
as discussed in Section 7.1.

Figure 11: ANchOVy’s graphical user interface showing pedestrians and their trajectories, spatial labels
(full-body, head, and luggage bounding boxes) as well as other labels.

6 Experimental Results: Garage Testbed

For the garage testbed experiment, we used three cameras located in the area between the parking garage
and the airport terminal. Sample images of the camera views are shown in Figures 12(a-c). People com-
ing from the parking garage will be seen first in camera A. They then proceed to camera B (at which point
there are stairs and elevators enabling them to enter or exit the scene). If they continue to move forward,
they will appear in camera C and move into the terminal.

In each experiment, we tagged a person in camera A and then tracked him or her until they disap-
peared from the field of view. The target’s feature vectors are extracted from the tracking frames. After the
target leaves camera A, we begin to detect and track all the candidates in cameras B and C for a 5-minute
period, as shown in Figures 12(b-c). We can see that the tracking task is very challenging in camera B, be-
cause of the distorted view angle and the crowded scene. However, as long as the person is successfully
detected and tracked for a short distance, the program can still make a reliable judgment. One example
re-id result is shown in Figure 12(d). We only display the top 5 candidates to the user in ascending order
of similarity score. In this example, the target person is ranked second in camera B and third in camera
C. Although detection and tracking in camera B is more challenging, the viewpoint (the person’s back),
is more similar to the tagged viewpoint, so the re-id results are better in camera B than in camera C.
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(a) (b)

(c) (d)

Figure 12: Sample results from the garage testbed, (a) tagging the person of interest in camera A, (b)
tracking in camera B, (c) tracking in camera C, (d) re-identification results (green boxes indicate correct
candidates).
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Across approximately 11 hours of run time, we automatically selected 42 targets in camera A from
the output of the pedestrian detector. Each of these acts as a probe image from which feature vectors are
extracted. After the target leaves camera A, we begin to detect and track candidates in cameras B and C
during the following 5-minute period. One example re-id result is shown in Figure 12d. We display the
top 4 candidates to the user, ranked in descending order of similarity score. In this example, the target
person was ranked second in camera B and third in camera C.

Table 1 summarizes the results. The overall system found 88% of the targets at rank 10 in camera B
and 38% of the targets at rank 10 in camera C. The relatively poor performance in camera C is caused
by failures in the pedestrian detector. That is, frequently the true re-appearance of the target was not
detected by the pedestrian detector module. As illustrated in Figure 13, the number of candidate match-
ing pedestrians provided by the pedestrian detector in camera C is significantly lower than the number
provided in camera B.

Therefore, we also computed the performance results after excluding those targets without any cor-
rect detections in the other cameras. In this case, the camera C performance is significantly improved
(reaching 100% at rank 10 over this subset). Figure 14 shows cumulative match characteristic (CMC)
curves for each of the two cameras and experimental subsets.

Table 1: Re-identification results for the on-site garage testbed experiment. “Default” indicates the per-
formance of the overall algorithm (even when the correct candidate does not appear in the camera B or
C gallery due to a failure of the pedestrian detector). “In-gallery” indicates the performance when we
only include targets that have matching images in the camera B and C galleries.

Re-id method Rank 1 Rank 5 Rank 10 Rank 20

Camera B
Default 26.2 61.9 88.1 92.3

In-gallery 28.3 66.7 94.9 100

Camera C
Default 14.3 26.2 38.1 38.1

In-gallery 37.5 68.8 100 100

Figure 13: The number of candidates produced by the person detector for the re-id galleries in cameras
B and C, as a function of the target index.
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Figure 14: Cumulative match characteristic (CMC) curves corresponding to the experiments in Table 1.

7 Experimental Results: Concourse Testbed

In this section we summarize the training of the system and report the results of a set of experiments
using real-world airport videos to evaluate the overall re-id performance. For these experiments, we
chose to use video from three cameras located in the area after the central checkpoint area. Of the three
cameras, one camera (camera A) corresponds to the central checkpoint area. The other two cameras
(cameras B and C) show views of the hallways heading towards different concourses. This camera net-
work has an interesting branching scenario in the sense that people that appear in the view of camera A
can go to either of the two concourses after spending an indefinite amount of time in the central area.
Since camera A corresponds to the central area, we choose this camera to tag persons of interest.

7.1 System Training

Using ANchOVy, we labeled 650 tracks of 188 pedestrians, each identified by a unique global ID, in multi-
ple image sequences recorded across CLE’s distributed camera network. The ground truth labeling pro-
cess produced tightly cropped images of pedestrians in every twelfth video frame ranging in size from
51×30 to 267×212 pixels.

The cropped images were then used to train our pedestrian detection and re-identification algo-
rithms. We grouped the pedestrian images based on their camera view to train camera-specific decision
trees for human detection as described in Section 3.1. We also used the ground truth bounding boxes
and global IDs to learn the feature space projection matrix P and the metric vector w for each of the
two camera pairs (A, B) and (A, C), as described in Section 3.2. Using five-fold cross-validation on these
training images, we set the dimension of the transformed feature space d̂ = 300 for re-id in the camera
pair (A, B) and d̂ = 200 for the camera pair (A, C).

7.2 User Interface

For the real-time experiments, we had to design a graphical user interface (GUI) to make it easy to tag
persons and score algorithm performance, illustrated in Figure 15. Figure 15a shows tagging a person of
interest in camera A, Figures 15b and c show detection and tracking of candidates in cameras B and C,
and Figure 15d shows the final re-identification results that are presented to the user of the interface. In
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this particular example, we note that the person of interest re-appeared in camera C, and was success-
fully re-identified at rank 1.

(a) (b)

(c) (d)

Figure 15: Snapshots from the graphical user interface developed for the airport human re-identification
task. (a) Tagging the person of interest in camera A, (b) Tracking candidates in camera B, (c) Tracking
candidates in camera C, (d) Re-identification results displayed to the user (red box indicates correctly
re-identified candidate).

7.3 Experimental Protocol

To evaluate the performance of the system, we deployed it at the Cleveland Hopkins International airport
and ran experiments using live video feeds, recording the real-time re-identification results. In each
experiment, a target person was manually tagged in camera A, and re-identified in cameras B or C. A
sample of 20 such target images is shown in Figure 16. We set a re-appearance time window of 3 minutes,
i.e., we waited for 3 minutes for the target person to re-appear. We define a valid experiment as one in
which the person of interest re-appeared within the set time window. An invalid experiment is one in
which the person of interest did not re-appear in either camera B or camera C within the set time window.
In total, across approximately 15 hours of run-time, we performed 198 experiments, out of which 151
experiments were valid. We use only the valid experiments to report performance statistics.

7.4 Performance Statistics

Of the 151 valid experiments, there were 94 cases in which the person of interest re-appeared in camera
B and 57 cases of re-appearance in camera C. Since the end-users of the system are unlikely to scroll
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through pages of candidates, performance at low ranks (e.g., n ≤ 5) is critical. To this end, we report the
real-time performance of the system in terms of the rank-5 performance, i.e., the percentage of experi-
ments in which the tagged person of interest was re-identified within the top-5 rank, and stayed within
the top-5 rank throughout the 3-minute time window. The rank-5 performance in each of the two re-
appearance cameras B and C is tabulated in Table 2. The cumulative match characteristic (CMC) curves
for each of the two re-appearance cameras are shown in Figure 17.

We see that our system was successfully able to re-identify 58.5% of the targets that re-appeared in
camera B and 61.4% of the targets that re-appeared in camera C. If we were to consider rank 10 perfor-
mance, the statistics would be 83.0% and 87.7%, respectively.

We have also experimented off-line with various re-id algorithms on datasets derived from the con-
course testbed. These are more ideal experiments in that system-level artifacts such as detection and
tracking issues resulting from relatively low-frame rate video are absent (see Section 7.5). Based on these
experiments, we project that improving these inputs to the system would improve re-id performance by
as much as 15% at rank 5.

Figure 16: A sample of 20 concourse targets manually tagged for system performance evaluation.

Table 2: Re-identification results for on-site concourse testbed experiments.

Re-appearance camera Number of experiments Rank 5 performance Rank 10 performance

B 94 58.5% 83.0%

C 57 61.4% 87.7%

7.5 Discussion

In this section, we discuss several issues that affected the overall performance of our system.
Video frame rate. We noticed serious compression artifacts from the video encoder while running

the video at 30 frames per second. We had to reduce the frame rate to 10 frames per second to avoid this
issue. Consequently, the performance of the detection and tracking modules suffered, as described next.

Detection and Tracking. Due to the relatively low frame rate of the video, there were several cases of
missed detection, i.e., cases in which the tagged person of interest was not detected upon re-appearance
in camera B or C. Specifically, in camera B, out of the 94 valid experiments, there were 12 cases in which
the person of interest was not detected. This number was 5 out of 57 valid experiments in camera C.

The low video frame rate also resulted in inaccurate tracking of the FAST corner features, resulting
in person tracking errors. Furthermore, in some experiments, due to the high crowd density, large oc-
clusions also contributed to tracking errors. Since we compute the mean feature vector for the track of
images available for each candidate, errors in tracking resulted in errors in downstream re-identification.
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Figure 17: Cumulative match characteristic (CMC) curves corresponding to the experiments in Table 2.

7.6 Comparison with academic benchmarks

We conclude this section by comparing our end-to-end system with how academic papers approach and
evaluate re-id algorithms. Typically, academic research on re-id is evaluated on VIPeR [9], a standard
benchmarking dataset. The current state of the art at rank-5 for VIPeR is around 75−80% [1, 25], while
our system was able to achieve a rank-5 performance of about 60%. While we cannot compare these
numbers directly, we mention several aspects of how performance on academic benchmarking datasets
is different from our real-world implementation:

Time-dependent gallery. In VIPeR, the gallery subjects are fixed. However, in our case, the goal is to
re-identify a person of interest who may re-appear in the gallery camera after an indefinite amount of
time. This results in a search over a gallery set that expands over time.

Hand-curated gallery vs. automatically-generated gallery. In VIPeR, the gallery set consists of im-
ages of persons generated by a ground-truthing mechanism. However, in our implementation, the gallery
is automatically constructed by using the raw outputs of pedestrian detection and tracking algorithms
that generate candidates in real time.

Gallery assumptions. In VIPeR, a key assumption is that the gallery set contains the person of inter-
est. However, this assumption does not hold in our implementation, since (1) the person of interest may
never appear in the camera generating a particular gallery, and (2) the pedestrian detection module may
fail to detect the person even if they do appear.

8 Conclusions

We discussed several practical challenges we faced while designing, implementing, deploying and testing
a real-time re-identification system in an airport. In particular, we highlighted the differences between
the re-id problem as it is posed in academia and how it must be solved in practice, and presented results
from our on-site algorithm deployment at the CLE airport.

To further improve the overall performance of our system, we could integrate several ideas from
our “more academic” research on re-id, such as weighting the features based on the estimated pose
and movement direction of the candidate prior to descriptor comparison [36], investigating personally-
discriminative feature selection and comparison [19, 36], adaptively clustering feature vectors obtained
from tracking prior to performing feature space projection [18], using kernel tricks to improve perfor-
mance [38], accounting for appearance changes through design of co-occurrence kernels [40, 39], and
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approaches based on structured prediction [41].
The DDS software architecture has allowed our team to successfully evaluate many different algo-

rithms and system configurations quickly. Since security procedures prevent remote access to the air-
port’s camera network, installation and debugging of the system requires one or more researchers to
physically visit the airport. The application framework described here has made these trips very effi-
cient, allowing quick installation and initial testing of new components with almost no time needed for
on-site debugging. We are currently tuning the robust DDS software architecture to run for days at a
time and recover from crashes, and creating an intuitive user interface that allows the user to easily re-
tain possible matches and reject others. Throughout the project, we have been able to apply lessons
learned from a previous project involving a system for real-time detection of counterflow through exit
lanes at the same airport [11, 37].

We also plan to further investigate the challenges of re-id in branching camera networks across very
long time scales. In the scenario described here, one of the two candidate galleries will never actually
contain the tagged person, while there could be a very long time lag before the gallery for the correct
concourse contains an image of the person. We plan to investigate temporal and predictive models for
person re-appearances in this challenging scenario, leveraging the ground-truthing framework from Sec-
tion 5. Separately, we are investigating a re-id scenario in a light rail environment, in which persons of
interest re-appear after days instead of minutes, corresponding to a potentially huge gallery. Typical
CMC curves are insufficient to characterize performance in such systems since they ignore the temporal
aspect of the constantly updating gallery.

9 Publications Supported by Task Order 5

In this section, we list and briefly summarize the conference and journal papers on human motion analy-
sis and re-identification fully or partially supported by Task Order 5 funding. The full publications appear
as an appendix to this report.

• Cheng et al. A Convex Optimization Approach to Robust Fundamental Matrix Estimation [6]. This
paper considers the problem of estimating the fundamental matrix from corrupted point corre-
spondences between images captured from different point of view. A general nonconvex frame-
work is proposed that explicitly takes into account the rank-2 constraint on the fundamental ma-
trix and the presence of noise and outliers. The main result of the paper shows that this non-
convex problem can be solved by solving a sequence of convex semi-definite programs, obtained
by exploiting a combination of polynomial optimization tools and rank minimization techniques.
Further, the algorithm can be easily extended to handle the case where only some of the corre-
spondences are labeled, and, to exploit co-ocurrence information, if available. Consistent experi-
ments show that the proposed method works well, even in scenarios characterized by a very high
percentage of outliers.

• Karanam et al., Particle Dynamics and Multi-Channel Feature Dictionaries for Robust Visual Track-
ing [14]. This paper describes a novel approach to the visual tracking problem in a particle fil-
ter framework based on sparse visual representations. Current state-of-the-art trackers use low-
resolution image intensity features in target appearance modeling. Such features often fail to cap-
ture sufficient visual information about the target. Here, we demonstrate the efficacy of visually
richer representation schemes by employing multi-channel feature dictionaries as part of the ap-
pearance model. To further mitigate the tracking drift problem, we propose a novel dynamic adap-
tive state transition model, taking into account the dynamics of the past states. Finally, we demon-
strate the computational tractability of using richer appearance modeling schemes by adaptively
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pruning candidate particles during each sampling step, and using a fast augmented Lagrangian
technique to solve the associated optimization problem. Extensive quantitative evaluations and
robustness tests on several challenging video sequences demonstrate that our approach substan-
tially outperforms the state of the art, and achieves stable results.

• Karanam et al., Sparse Re-Id: Block Sparsity for Person Re-Identification [16]. This paper presents a
novel approach to solve the problem of person re-identification in non-overlapping camera views.
We hypothesize that the feature vector of a probe image approximately lies in the linear span of
the corresponding gallery feature vectors in a learned embedding space. We then formulate the re-
identification problem as a block sparse recovery problem and solve the associated optimization
problem using the alternating directions framework. We evaluate our approach on the publicly
available PRID 2011 and iLIDS-VID multi-shot re-identification datasets and demonstrate superior
performance in comparison with the current state of the art.

• Karanam et al., Person Re-Identification with Discriminatively Trained Viewpoint Invariant Dictio-
naries [15]. This paper introduces a new approach to address the person re-identification problem
in cameras with non-overlapping fields of view. Unlike previous approaches that learn Mahalanobis-
like distance metrics in some embedding space, we propose to learn a dictionary that is capable
of discriminatively and sparsely encoding features representing different people. Our approach
directly addresses two key challenges in person re-identification: viewpoint variations and dis-
criminability. First, to tackle viewpoint and associated appearance changes, we learn a single
dictionary to represent both gallery and probe images in the training phase. We then discrimi-
natively train the dictionary by enforcing explicit constraints on the associated sparse represen-
tations of the feature vectors. In the testing phase, we re-identify a probe image by simply de-
termining the gallery image that has the closest sparse representation to that of the probe image
in the Euclidean sense. Extensive performance evaluations on two publicly available multi-shot
re-identification datasets demonstrate the advantages of our algorithm over several state-of-the-
art dictionary learning, temporal sequence matching, and spatial appearance and metric learning
based techniques.

• Li et al., Real-World Re-Identification in an Airport Camera Network [17]. This paper is a prelimi-
nary version of this report (and of the journal paper [4] in review mentioned below). In this paper,
we describe an end-to-end system solution of the re-identification problem installed in an air-
port environment, with a focus on the challenges brought by the real world scenario. We discuss
the high-level system design of the video surveillance application, and the issues we encountered
during our development and testing. We also describe the algorithm framework for our human re-
identification software, and discuss considerations of speed and matching performance. Finally,
we report the results of an experiment conducted to illustrate the output of the developed software
as well as its feasibility for the airport surveillance task.

• Li et al., Multi-Shot Re-Identification with Random-Projection-Based Random Forests [19]. Current
metric learning algorithms mainly focus on finding an optimized vector space such that observa-
tions of the same person in this space have a smaller distance than observations of two different
people. In this paper, we propose a novel metric learning approach to the human reidentification
problem, with an emphasis on the multi-shot scenario. First, we perform dimensionality reduc-
tion on image feature vectors through random projection. Next, a random forest is trained based
on pairwise constraints in the projected subspace. This procedure repeats with a number of ran-
dom projection bases, so that a series of random forests are trained in various feature subspaces.
Finally, we select personalized random forests for each subject using their multi-shot appearances.
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• Li et al., Multi-Shot Human Re-Identification Using Adaptive Fisher Discriminant Analysis [18].
While much research in human re-identification has focused on the single-shot case, in real-world
applications we are likely to have an image sequence from both the person to be matched and each
candidate in the gallery, extracted from automated video tracking. It is desirable to take advantage
of the multiple visual aspects (states) of each subject observed during training and testing. How-
ever, since each subject may spend different amounts of time in each state, equally weighting all
the images in a sequence is likely to produce suboptimal performance. To address this problem, we
introduce an algorithm to hierarchically cluster image sequences and use the representative data
samples to learn a feature subspace maximizing the Fisher criterion. The clustering and subspace
learning processes are applied iteratively to obtain diversity-preserving discriminative features. A
metric learning step is then applied to bridge the appearance difference between two cameras.

• Lo Presti et al., Gesture Modeling by Hanklet-based Hidden Markov Model, [20] and Hankelet-based
Dynamical Systems Modeling for 3D Action Recognition, [21]. In these papers we propose to model
an action as the output of a sequence of atomic Linear Time Invariant (LTI) systems. The sequence
of LTI systems generating the action is modeled as a Markov chain, where a Hidden Markov Model
(HMM) is used to model the transition from one atomic LTI system to another. In turn, the LTI
systems are represented in terms of their Hankel matrices. For classification purposes, the param-
eters of a set of HMMs (one for each action class) are learned via a discriminative approach. This
work proposes a novel method to learn the atomic LTI systems from training data, and analyzes in
detail the action representation in terms of a sequence of Hankel matrices. Extensive evaluation of
the proposed approach on two publicly available datasets demonstrates that the proposed method
attains state-of-the-art accuracy in action classification from the 3D locations of body joints (skele-
ton).

• Wang et al., Self Scaled Regularized Robust Regression [35]. Linear Robust Regression (LRR) seeks
to find the parameters of a linear mapping from noisy data corrupted from outliers, such that the
number of inliers (i.e. pairs of points where the fitting error of the model is less than a given bound)
is maximized. While this problem is known to be NP hard, several tractable relaxations have been
recently proposed along with theoretical conditions guaranteeing exact recovery of the parameters
of the model. However, these relaxations may perform poorly in cases where the fitting error for
the outliers is large. In addition, these approaches cannot exploit available a-priori information,
such as co-occurrences. To circumvent these difficulties, in this paper we present an alternative
approach to robust regression. Our main result shows that this approach is equivalent to a “self-
scaled" `1 regularized robust regression problem, where the cost function is automatically scaled,
with scalings that depend on the a-priori information. Thus, the proposed approach achieves sub-
stantially better performance than traditional regularized approaches in cases where the outliers
are far from the linear manifold spanned by the inliers, while at the same time exhibits the same
theoretical recovery properties. These results are illustrated with several application examples us-
ing both synthetic and real data.

• Wu and Radke, Improving Counterflow Detection in Dense Crowds with Scene Features [37]. This
paper addresses the problem of detecting counterflow motion in videos of highly dense crowds.
We focus on improving the detection per formance by identifying scene features | that is, features
on motionless background surfaces. We propose a three-way classifier to differentiate counter-
flow from normal flow, simultaneously identifying scene features based on statistics of low-level
feature point tracks. By monitoring scene features, we can reduce the likelihood that moving fea-
tures’ point tracks mix with scene feature point tracks, as well as detect and discard frames with
periodic jitter. We also construct a Scene Feature Heat Map, which reflects the space-varying prob-

25



ability that object trajectories might mix with scene features. When an object trajectory nears a
high-probability region of this map, we switch to a more time-consuming and robust joint Lucas-
Kanade tracking algorithm to improve performance.

• Wu et al., Viewpoint Invariant Human Re-identification in Camera Networks Using Pose Priors and
Subject-Discriminative Features [36]. Current re-id algorithms are likely to fail in real-world sce-
narios for several reasons. For example, surveillance cameras are typically mounted high above
the ground plane, causing serious perspective changes. Also, most algorithms approach matching
across images using the same descriptors, regardless of camera viewpoint or human pose. Here,
we introduce a re-identification algorithm that addresses both problems. We build a model for
human appearance as a function of pose, using training data gathered from a calibrated camera.
We then apply this “pose prior” in online re-identification to make matching and identification
more robust to viewpoint. We further integrate person-specific features learned over the course of
tracking to improve the algorithm’s performance.

• Xiong et al., Re-Id Using Kernel-based Metric Learning Methods [38]. In this work we propose the
use, and extensively evaluate the performance, of four alternative methods for Re-Identification
classification: regularized Pairwise Constrained Component Analysis, kernel Local Fisher Discrim-
inant Analysis, Marginal Fisher Analysis and a ranking ensemble voting scheme, used in conjunc-
tion with different sizes of sets of histogram-based features and linear, χ2 and RBF-χ2 kernels.
Comparisons against the state of the art show significant improvements in performance.

• Zhang et al., Group Membership Prediction [40]. The group membership prediction (GMP) prob-
lem involves predicting whether or not a collection of instances share a certain semantic property.
We propose a novel probability model and introduce latent view-specific and view-shared random
variables to jointly account for the view-specific appearance and crossview similarities among data
instances. Our model posits that data from each view is independent conditioned on the shared
variables. This postulate leads to a parametric probability model that decomposes group mem-
bership likelihood into a tensor product of data-independent parameters and data-dependent
factors. We propose learning the data-independent parameters in a discriminative way with bi-
linear classifiers, and test our prediction algorithm on challenging visual recognition tasks such as
multi-camera person re-identification and kinship verification.

• Zhang et al., A Novel Visual Word Co-occurrence Model for Person Re-identification [39]. In this work
we account for appearance transformation between camera views by means of a co-occurrence
matrix of visual word joint distributions in probe and gallery images. Our appearance model nat-
urally accounts for spatial similarities and variations caused by pose, illumination, and configura-
tion change across camera views. Linear support vector machines are then trained as classifiers
using these co-occurrence descriptors.

In addition, the following papers are currently under review:

• Camps et al., From the Lab to the Real World: Re-Identification in an Airport Camera Network [4].
This paper is basically the same as this report, and is meant to describe the overall joint effort
between Rensselaer and Northeastern in bringing academic re-id research into the challenging
airport setting.

• Zhang and Saligrama, PRISM: Person Re-Identification via Structured Matching [41]. PRISM views
the Re-ID problem as a weighted graph matching problem, and estimates edge weights by learning
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to predict them based on the co-occurrences of visual patterns in the training examples. These co-
occurrence based scores in turn account for appearance changes by inferring likely and unlikely
visual co-occurrences appearing in training instances. We implement PRISM on single shot and
multi-shot scenarios. PRISM uniformly outperforms the state-of-the-art in terms of matching rate
while being computationally efficient.
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