Adaptive Automatic Threat Recogntion *AATR - Review*

Toby Breckon, Qian Wang, Khalid Ismail

Durham University, UK toby.breckon@durham.ac.uk

17 May 2018

This material is based upon work supported by the U.S. Department of Homeland security under Award Number 2013-ST-061-E001. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

Overview

3D Segmentation: shape-based

3D Segmentation: density-based

A segmented object BEFORE density-based split

A segmented object AFTER density-based split

Classification

- Four-Class Problem
 - Saline, Rubber, Clay, Others
- Features
 - L2-normalized Histogram (nHist)
- One-vs-All SVM (libsvm)
 - Output Probability

 p(saline|object)
 p(rubber|object)
 p(clay|object)
 p(others|object)
- Training
 - Ground Truth Objects for Saline, Rubber and Clay
 - Synthesized nHist Features for New OOIs
 - Gaussian functions with randomly selected $\mu \in [minRho, maxRho]$, $\sigma \in [6,8]$

Adaptation

• Adjust the Density Range of OOIs:

 $minRho = minRho * \alpha$,

 $maxRho = maxRho / \alpha$, $\alpha \in (0,1]$.

• Adjust the Classifier Output Probability:

p(OOI|object) = p(OOI|object) + Offset

 $Offset = f(PD_{OOI})$

e.g., if saline is the target material, we **add a positive offset** $f(PD_{oot})$ to p(saline|object), thus the segmented objects have better chance to be classified as saline than others.

Results: ROC

- Based on AM2: ORS4, ORS5 and ORS6
- Highest PD
 - Saline: 90% (PFA:19%)
 - Rubber: 93% (PFA:18%)
 - Clay: 94% (PFA: 3%)
- PFA~=10%
 - PD(saline): 83%
 - PD(rubber): 85%
 - PD(clay): 94%

Performer Training / TO4 Data

AM 1: AROC

001	Required PD [%]	Require PFA [%]	ed AATR PD [%]	AATR PFA [%]	
S	0.7	0.02	0.73	0.07	
S	0.8	0.05	0.82	0.1	
S	0.85	0.08	0.85	0.12	
S	0.9	0.1	0.88	0.14	
S	0.95	0.2	0.9	0.22	
AROC			0.87		

AM 4: PD/PFA for Varying Mass

OOI	Min Mass [g]	Required PD [%]	Required PFA [%]	AATR PD [%]	AATR PFA [%]	Incremental Mass Range [g]	AATR Incremental PD [%]
S	400	90	10	98	14	N/A	N/A
S	300	90	10	97	14	300 - 400	97
S	100	90	10	88	14	100 - 300	81

AM 5: PD/PFA for Varying Thicness

001	Min Thickness [mm]	Required PD [%]	Required PFA [%]	AATR PD [%]	AAT R PFA [%]	Incremental Thickness Rnge [mm]	AATR Incremental PD [%]
R	10	90	10	96	14	N/A	N/A
R	6.5	90	10	97	14	6.5 - 10	95
R	0	90	10	92	14	0-6.5	80

ALERT Testing / TO7 Data

AM 2: PD/PFA for Varying OOIs

OOI(s)	Required PD [%]	Required PFA [%]	AATR PD [%]	AATR PFA [%]
m1	90	10	76	12
m2	90	10	100	46
m3	90	10	92	15
m4	90	10	100	11

AM 2: PD/PFA for Varying OOIs

001	Require d PD [%]	Required PFA [%]	AATR PD [%]	AATR PFA [%]
C,S,R	90	10	95	26
С	90	10	97	26
S	90	10	90	26
R	90	10	98	26

AM 3: Varing PD Weight

OOI	Required PD [%]	Required PFA [%]	AATR PD [%]	AATR PFA [%]		
C,S	C:90, S:90	10	C:95, S:88	18		
C,S	C:20, S:90	10	C:92, S:86	16		
C,S	C:90, S:20	10	C:94, S:11	4		
University						

Future Work

- Improve Segmentation
 - Noise Removal (NLM)
 - Parameter tuning
- Improve Classification
 - Other features than nHist
 - One class for each new object

Segmentation Failure Examples (ssn=7,10)

- Improve Adaptation
 - Consider the correlation between multiple OOIs if there exist
 - $f(PD_1) \rightarrow f(PD_1; PD_2)$
 - $f(PD_2) \rightarrow f(PD_2; PD_1)$

Object Detection & Classification in 3D CT

Single signature feature-point based detection: ~90% detection

[Flitton, Breckon, Megherbi - 2010]

"bag of visual words" generalized signature classification : ~98+% detection, low FP (<1%)

[Mouton, Breckon, 2014] [Mouton, Breckon 2015] [Flitton, Breckon 2015] [Flitton, Breckon 2012]

Some technical insight

Durham University

Density

 $S \cdot 12$

- key-point descriptors [video]
- "bag of visual words" signature
 - each object type represented as histogram of visual word occurrence
- Machine Learning Classification:
 - Support Vector Machine (SVM)
 - Random Forests (RF)
- Strongly invariant: rotation, scale, object {occlusion | disassembly}

Noise (Metal Artefact) Reduction in 3D CT

Object Segmentation in 3D CT (dual energy)

1. **Coarse segmentation**

Dual-energy CT materials-based discrimination

Random Forest Score (RFS)

Random Forest Score (RFS) - guided refinement 3.

... which feeds back to object detection

Exhaustive sub-volume search

resolution 1.56 x 1.61 x 5 (mm)

Method	Class	True +	False +	Prec.
[Mouton,	Handgun	99.71	0.28	0.990
Breckon, 2014]	Bottle	98.88	0.60	0.987