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AATR: High Level Overview 
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• Target PD/PFA: Find the best parameter in 10-fold CV 

which maximizes weighted PD and matches target PFA   

 

 

• MinMass/MinThickness: Bulk/Sheet Classifier 

– Bulk: Threshold by MinMass 

– Sheet: Threshold by MinThickness 

 

• Objects of Interests: Ground-Truth in Training DB 

– Known (Saline, Rubber, Clay): Manual Ground-Truth 

– Unknown: Selected Objects by Median 

AATR: Specifications 
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Segmentation: Metal Artifact Reduction 

1. Detect metal streak mask: Beam-hardening model 

2. In-paint streak mask region: Dictionary-learning 
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1. Identify merged objects: Histogram Peak Analysis 

 

 

 

2. Apply multi-label segmentation: Potts Model 

– Intensity-based fidelity + Label smoothness regularization 

– Convex optimization with probability constraints 

 

Input image CCL CCL + 
 Intensity-based Segmentation  

on Merged Objects 

Separated merged object Still merged after CCL 

5 

Merged object Single object 

Histogram (3 peaks) Histogram (1 peak) 

Segmentation: Merged Object Separation 



• Shape Features: Minimum volume enclosing ellipsoid  

– Ellipsoid axes :                                        

– Axis ratio: 

– Volume ratio:  

 

 

 

• Target Features: Normalized Histogram 
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Classification: Features 
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• k-Nearest Neighbor (kNN) classifier 

– Inference based on the distance to the training data 

– Very efficient training: kd-tree  

 

 

 

 

• Parameters 

– Distance: 

• Euclidean, Standardized Euclidean, Mahalanobis 

 

–  Number of neighbors: k=[1,2,…,7,8] 
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Classification: Classifier 
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Performer Training / TO4 Data 

ALERT Testing / TO7 Data 

OOI(s) 
Required 

PD 
 [ % ] 

Required 
PFA 

 [ % ] 

AATR 
PD 

 [ % ] 

AATR 
PFA 

 [ % ] 

m1 90 10 83 14 

m2 90 10 100 13 

m3 90 10 100 12 

m4 90 10 100 6 

OOI 
Required 

PD 
 [ % ] 

Required 
PFA 

 [ % ] 

AATR 
PD 

 [ % ] 

AATR 
PFA 

 [ % ] 

C,S,R 90 10 89 

14 
C 90 10 94 

S 90 10 90 

R 90 10 86 

AM 2: PD/PFA for Varying OOIs (ORS #1 only) 

OO
I 

Required 
PD 

 [ % ] 

Required 
PFA 

 [ % ] 

AATR 
PD 

 [ % ] 

AATR 
PFA 

 [ % ] 

S 70 2 84 3 

S 80 5 89 6 

S 85 8 90 7 

S 90 10 91 10 

S 95 20 91 10 

AM 1: AROC 

AROC 0.9342 

AM 2: PD/PFA for Varying OOIs 

AM 3: Varing PD Weight 

OO
I 

Req PD 
 [ % ] 

Req 
PFA 

 [ % ] 

AATR  
PD 

 [ % ] 

AATR 
PFA 

 [ % ] 

C,S C:90, S:90 10 C: 96 S: 83 12 

C,S C:20, S:90 10 C: 95 S: 87 13 

C,S C:90, S:20 10 C: 96 S: 83 14 

OOI 
Min Mass 

[ g ] 

Required 
PD 

 [ % ] 

Required 
PFA 

 [ % ] 

AATR 
PD 

 [ % ] 

AATR 
PFA 

 [ % ] 

Incremental 
Mass Rnge [ 

g ] 

AATR  
Incremental 

PD 
 [ % ] 

S 400 90 10 96 7 N/A N/A 

S 300 90 10 93 9 300 - 400 90 

S 100 90 10 91 11 100 - 300 90 

AM 4: PD/PFA for Varying Mass 

OOI 
Min 

Thickness 
[ mm ] 

Required 
PD 

 [ % ] 

Required 
PFA 

 [ % ] 

AATR 
PD 

 [ % ] 

AATR 
PFA 

 [ % ] 

Incremental 
Thickness 

Rnge  
[ mm ] 

AATR  
Incremental 

PD 
 [ % ] 

R 10 90 10 94 8 N/A N/A 

R 6.5 90 10 91 9 6.5 - 10 86 

R 0 90 10 88 9 0 – 6.5 80 

AM 5: PD/PFA for Varying Thicness 



Future Works 

• Deep Learning for CT De-noising  

– Improved Segmentation/ Feature Extraction  

 

 

 

 

• Deep Learning for Target Classification 

– Higher PD/ Lower PFA 

• Generative Adversarial Networks (GAN) 

– Synthetic Normalized Histogram for Unknown Materials 
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