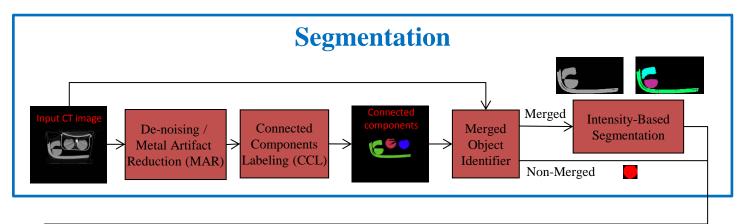
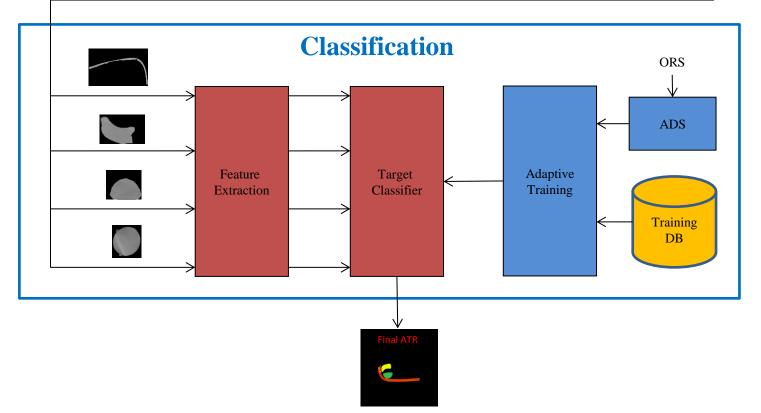
Adaptive Automatic Target Recognition for CT-Based Object Detection Systems

Dong Hye Ye: Research Assistant Professor (Machine Learning for Image Segmentation and Classification)


<u>Charles Bouman</u>: Showalter Professor (CT Reconstruction and Artifact Removal)


School of Electrical and Computer Engineering, Purdue University yed@purdue.edu, bouman@purdue.edu

"This material is based upon work supported by the U.S. Department of Homeland security under Award Number 2013-ST-061-E001. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security."

AATR: High Level Overview

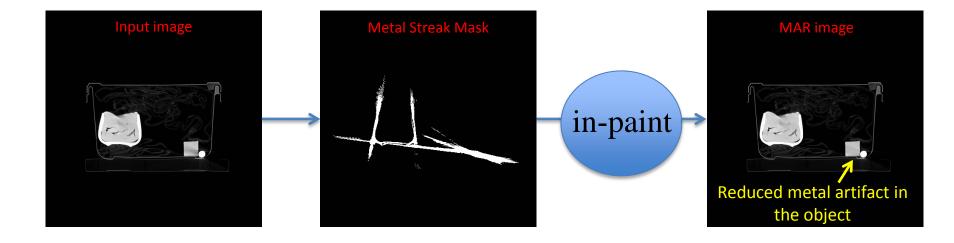
AATR: Specifications

• Target PD/PFA: Find the best parameter in 10-fold CV which maximizes weighted PD and matches target PFA

$$\underset{q}{\arg\max} \underset{i}{\overset{a}{\operatorname{CV}}} T^{i}_{PD} \times CV^{i}_{PD}(Q) \quad \text{s.t. } CV_{PFA}(Q) < T_{PFA}(Q) < T$$

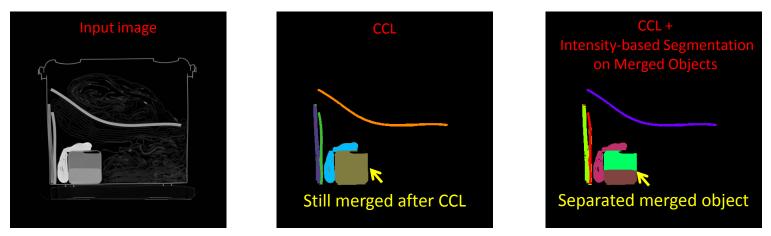
- MinMass/MinThickness: Bulk/Sheet Classifier
 - Bulk: Threshold by MinMass
 - Sheet: Threshold by MinThickness

- Known (Saline, Rubber, Clay): Manual Ground-Truth
- Unknown: Selected Objects by Median

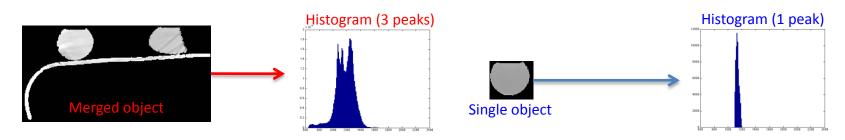

 $rho_{\min} < median < rho_{\max}$

10

1050

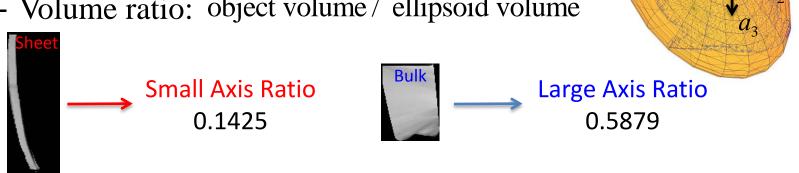

Segmentation: Metal Artifact Reduction

- 1. Detect metal streak mask: Beam-hardening model
- 2. In-paint streak mask region: Dictionary-learning

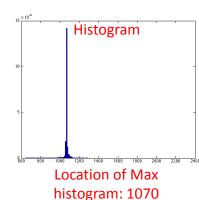


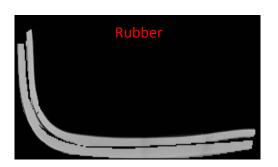
ICIP 2015 Best Paper Runner-Up

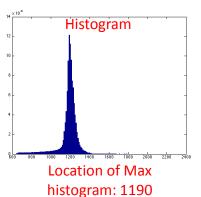
Segmentation: Merged Object Separation


1. Identify merged objects: Histogram Peak Analysis

- 2. Apply multi-label segmentation: Potts Model
 - Intensity-based fidelity + Label smoothness regularization
 - Convex optimization with probability constraints


Classification: Features


- Shape Features: Minimum volume enclosing ellipsoid
 - Ellipsoid axes : a_1, a_2, a_3
 - Axis ratio: $\min\{a_1, a_2, a_3\} / \max\{a_1, a_2, a_3\}$
 - Volume ratio: object volume / ellipsoid volume



• Target Features: Normalized Histogram

R a

Classification: Classifier

- k-Nearest Neighbor (kNN) classifier
 - Inference based on the distance to the training data
 - Very efficient training: kd-tree

- Parameters
 - Distance: $d_{ij} = \sqrt{(\mathbf{f}_i \mathbf{f}_j)^T \mathbf{V}^{-1} (\mathbf{f}_i \mathbf{f}_j)}$
 - Euclidean, Standardized Euclidean, Mahalanobis

$$(\mathbf{V} = \mathbf{I}) \qquad (\mathbf{V} = \mathbf{S}) \qquad (\mathbf{V} = \mathbf{C})$$

$$Number of neighbors: k=[1,2,...,7,8]$$

Performer Training / TO4 Data

AM 1: AROC					
00 I	Required PD [%]	Requi PF/ [%	4	AATR PD [%]	AATR PFA [%]
S	70	2		84	3
S	80	5		89	6
S	85	8		90	7
S	90	10)	91	10
S	95	20)	91	10
AROC 0.9342					2

AM 2: PD/PFA for Varying OOIs (ORS #1 only)

001	Required PD [%]	Required PFA [%]	AATR PD [%]	AATR PFA [%]
C,S,R	90	10	89	
С	90	10	94	1.4
S	90	10	90	14
R	90	10	86	

AM 3: Varing PD Weight					
00 I	Req PD [%]	Req PFA [%]	AATR PD [%]	AATR PFA [%]	
C,S	C:90, S:90	10	C: 96 S: 83	12	
C,S	C:20, S:90	10	C: 95 S: 87	13	
C,S	C:90, S:20	10	C: 96 S: 83	14	

	chorner framing / 104 Data						
	AM 4: PD/PFA for Varying Mass						
001	Min Mass [g]	Required PD [%]	Required PFA [%]	AATR PD [%]	AATR PFA [%]	Incremental Mass Rnge [g]	AATR Incremental PD [%]
S	400	90	10	96	7	N/A	N/A
S	300	90	10	93	9	300 - 400	90
S	100	90	10	91	11	100 - 300	90

AM 5: PD/PFA for Varying Thicness

001	Min Thickness [mm]	Required PD [%]	Required PFA [%]	AATR PD [%]	AATR PFA [%]	Incremental Thickness Rnge [mm]	AATR Incremental PD [%]
R	10	90	10	94	8	N/A	N/A
R	6.5	90	10	91	9	6.5 - 10	86
R	0	90	10	88	9	0 - 6.5	80

ALERT Testing / TO7 Data

AM 2: PD/PFA for Varying OOIs						
OOI(s)	Required PD [%]	Required PFA [%]	AATR PD [%]	AATR PFA [%]		
m1	90	10	83	14		
m2	90	10	100	13		
m3	90	10	100	12		
m4	90	10	100	6		

Future Works

- Deep Learning for CT De-noising ICASSP 2018 Invited
 - Improved Segmentation/ Feature Extraction

FBP	De-noising	Ground-Truth
(PSNR: 18.73dB)	(PSNR: 19.68dB)	MBIR

- Deep Learning for Target Classification
 Higher PD/ Lower PFA
- Generative Adversarial Networks (GAN)
 - Synthetic Normalized Histogram for Unknown Materials