Handheld IED Detection Device with Firestorm Emergency Services

ALERT research out of Missouri University of Science and Technology, led by Prof. Daryl Beetner, is currently working to develop methods to indirectly detect and locate explosives by identifying the electromagnetic emissions from these electronic initiators. This approach has the advantage that a device can potentially be detected from tens or even hundreds of meters away in a very short period of time using relatively small, inexpensive, low-power sensors.

Hidden explosives can be extraordinarily difficult to locate. While the most obvious approach is to look for the explosive compound, techniques which look for these compounds often only work from short distances, can only be used over a very limited area, or are very slow to generate a detection. An alternative is to instead look for the electronic trigger that is used to initiate the explosive.  Electronics used in triggers like timers, wireless receivers, motion detectors, and microcontrollers, emit electromagnetic energy (i.e. radio waves) when they are turned on. These radio waves can potentially be detected from long distances in a short period of time using relatively small, inexpensive, low-power sensors.

In the last year, Beetner and his team have developed techniques to locate (not just detect) radio receivers using a stimulated emissions approach. Detection of electronics has an advantage over many other explosives detection techniques in that it can potentially be done relatively quickly from relatively long range and can be done with relatively inexpensive equipment. It gives the bomb technician one more point of information with which to make a decision about the presence of explosives and how to deal with the explosives once found. As Beetner explains, “We’ve developed methods to accurately detect and locate the most common types of radio receivers. We’ve shown that these techniques are fast and work well at long distances, even in very noisy urban environments”. While detection of suspect electronics does not necessarily indicate the presence of an explosive device, this information can be combined with other information relatively easily to confirm or add information about a threat. The information is unique from other explosive sensors so it is well primed for sensor fusion.

ALERT has teamed up with Firestorm Emergency Services to develop a commercial product around algorithms developed by Beetner and his group. Firestorm manufactures a small, inexpensive, hand-held device for detecting and locating the electromagnetic signatures from aircraft emergency beacons and from radio location beacons worn by Alzheimer’s patients, so they already have hardware under development that is ideal for the team’s approach. The fundamental detection methods developed here are also being extended with Firestorm to develop systems for locating vehicles at remote border crossings.

There are currently no comments.

Comments are closed.

The comments are closed.